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Abstract
If fragments of DNA are transcribed (expressed), they deserve to be called (parts of) a gene.Whether transcription
takes place depends on the ‘gene regulatory network’. This network is defined as the complex interplay of the
sequence, biochemical modifications and structure of the chromosomal DNA with the regulatory proteins/RNA
(transcription factors, co-factors, regulating RNA and the transcriptional apparatus itself). Gene regulatory net-
works play a role in various stages of development as well as in the maintenance of the organism; in this review
we will concentrate on the former.Their evolutionary reconstruction is daunting (to say the least), and bioinformat-
ics tools are in their infancy.However, gain of understanding offers a reward beyond itself, since evolutionary consid-
erations can enable discoveries in the first place, e.g. the computational identification of conserved transcription
factor binding sites. We discuss the evolution of gene regulation in the context of the ‘Genetic Theory of
Morphological Evolution’ as described by Carroll, identifying those parts of the theory that are relevant for bio-
informatics, and their implications. We discuss the important question of how bioinformatics analysis results
on the evolution of gene regulation may be validated. Finally, we briefly exemplify use of the UCSC genome browser,
exploiting its pre-computed alignments to describe the evolution of gene regulation.
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BIOLOGICALBACKGROUND
DNA and the network of regulators
Chromosomal DNA can be represented by a string

of nucleotides. In a genome browser such as UCSC

[1], it serves as the x-axis across which its features

can be visualized, as in Figure 1. DNA includes tran-

scribed parts (genes), which are often used as blue-

prints for proteins, and a large set of ‘regulatory

elements’. These elements, that is their sequence of

nucleotides, their modification (such as methylation)

and structural accessibility decide in part about

the timing and the amount of successful transcription

[2]. Successful transcription means that RNA is pro-

duced—the gene is expressed. The RNA is usually

processed further. Transcription also depends on a

multitude of other factors, which may be represented

by a network of interacting proteins and RNAs.

Among them are transcription factors, microRNAs

and the proteins of the transcriptional apparatus,

which produces the RNA, given the DNA template.

This ‘network of regulators’ is dynamic in space and

time. The concentration of the network components

is subject to influences that are internal to the nu-

cleus/cell (after all, transcription factors are tran-

scribed themselves and they may also regulate their

own transcription), external (environmental, driven

by neighboring cells), and/or stochastic (due to

effects that happen at random).

Regulatory elements and events
Since DNA can bend and may form loops in

3D space, the linear sequence of the regulatory elem-

ents, which are found before, within or after the

gene, does not necessarily tell us much about their
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mutual interaction and their influence on regulation.

Nevertheless, one can organize the elements into

so-called modules, often termed CRMs, cis-
regulatory modules. Furthermore, one distinguishes

regulatory elements that are distal or proximal to the

transcription start site. If transcription factors bind to

(some of) these elements, transcription may be

started or enhanced, reduced or silenced. Impor-

tantly, depending on the network of regulators that

is active at a given time, the same elements may

trigger a different, and sometimes opposite, effect.

Thus, the typical regulatory region of a gene includes

an array of regulatory elements, which may be en-

hancers or silencers. Closest to the transcription start

site are the core and the proximal promoter, fol-

lowed by distal elements. Here, the core promoter

is the minimal portion of the promoter required to

properly initiate transcription. The proximal pro-

moter includes specific transcription factor binding

sites (TFBSs) up to �250-bp upstream of the tran-

scription start site; these are also known as proximal

elements. Distal elements are binding sites >250-bp

upstream. Some components of the network of

regulators form tight complexes called ‘enhanceo-

somes’, which bind to regulatory elements, in a

competitive or cooperative fashion. A small change

(e.g. the gain, loss, exchange or molecular modifica-

tion of one component) may turn them into ‘repres-

somes’ [2]. The exact composition of the complexes

depends on the concentration of their components

in the nucleus [3]. The affinity of the complexes to

the regulatory elements depends on their compos-

ition. In turn, affinity also influences complex com-

position, if some components bind to the DNA

before the complex is assembled ([4], Box 3 and

Figure 2 therein). Such variation in enhanceosome

buildup, modification and binding starts to blurr

the traditional distinction of tight and rigid

‘enhancesome’ binding sites on one hand and loose

billboard-like sets of binding sites on the other hand.

Moreover, bound complexes may move along the

DNA, before contributing their effect to gene regu-

lation [5]. Most likely, this movement is also influ-

enced by a variety of factors. Even breakup of the

DNA has been implicated in regulatory events [6, 7].

Once DNA is transcribed, the stability of the tran-

script depends on a multitude of factors. Finally,

it may (or may not) be translated; these two aspects

of ‘gene regulation’ are outside the scope of this

review.

Figure 1: The Sox2 regulatory region, displayed using the UCSC genome browser [1]. The first two tracks display
the scale bar and the chromosomal positions. The ‘UCSC genes’ track displays the Sox2 gene itself (in black), and
parts of the Sox2 overlapping transcript [62] (in blue). Information on experimentally validated regulatory elements
is displayed thereafter, using grey blocks and green text.The last tracks display alignment quality as grayscale density.
UCSC convention is that yellow regions denote consecutive Ns (lack of sequence) and double lines denote
unalignable bases. Red boxes mark binding sites involved in neural regulation, blue boxes mark binding sites involved
pluripotency, and the green box marks the binding sites of the N2 region involved in both.
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The impression of a computer scientist after read-

ing the literature is not just that gene regulation is

extremely complicated, but there is also a plethora of

unknown entities and relationships that still need to

be elucidated. Considering this complexity in silico is

a hard task. Thus, good news for bioinformatics is the

few papers revealing simple rules. For example, there

does not seem to be much interference of the regu-

latory effects of neighboring regulatory elements.

Instead, effects seem to be additive [8]—an island

of simplicity in an ocean of complexity. But whether

such additivity holds in general remains to be seen.

After all, complexes of transcription factors may still

interfere with each other, if binding sites are suffi-

ciently close.

The gene regulatory network and
its evolution
The network of regulators on one hand and the regu-

latory elements on the DNA level on the other hand

form the ‘gene regulatory network’. In this termin-

ology, evolution of gene regulation is concerned

with the evolution of the gene regulatory network

and its components. To begin with, there are

studies of the evolution of transcription factors and

co-factors (e.g. [9, 10]) and their interactions

(e.g. [11, 12]), of regulatory RNA (e.g. [13]) and

of the transcriptional apparatus itself (e.g. [14, 15]).

Consideration of the evolutionary interplay

(co-evolution) of the various components of gene

regulation should increase the success rate of com-

putational evolutionary reconstructions (see below).

At least some of these components can be traced

back to the roots of life [10], but details are the

more nebulous the more we move back in time.

In this review, we will concentrate on developmen-

tal gene regulatory networks. Davidson and Erwin

[16] divide these into the following:

� ‘network kernels’ regulate general aspects of

development (e.g. heart development) and are

conserved across phyla,

� ‘plug-ins and I/O switches’ are concerned with

developmental subcircuits (e.g. signaling) and are

conserved within (sub)phyla, and

� ‘differentiation gene batteries’ execute the final

developmental readout and are often only con-

served in groups of closely related species.

As discussed below, good judgment in selecting the

appropriate set of species is important for the success

of computational inferences, because these different

kinds of gene regulatory networks tend to be con-

served for different sets of species.

The evolution of some regulatory elements on the

chromosomal DNA can be traced back to the origin

of the vertebrate lineage. In particular, there are still

short conserved regulatory elements in lamprey [17],

the earliest diverging extant vertebrate lineage.

Evolution of many binding sites is due to mutations,

insertions and deletions of nucleotides, and due to

transposable elements [18]. Their volatility can lead

to high turnover of binding sites in some cases, e.g.

reducing conservation of Oct/Sox binding sites in

rodents [18]. Binding (of a transcription factor),

regulatory effect, and evolutionary conservation of

the binding site are observations that may (or may

not) co-occur (see Figure 2, and below). In case of

human, the Encode pilot project [19] found no func-

tion in 40% of the conserved sequence regions, and

A B C

TFBSs with
regulatory function

conserved
TFBSs

binding events
detected by CHiP

More overlap of conserved
TFBSs and TFBSs with
regulatory function
(shaded)

More overlap of binding
events detected by CHiP
and TFBSs with regulatory 
function (shaded)

Figure 2: (A) The overlap between conserved transcription factor binding sites (TFBSs), binding events detected
by ChIP, and TFBSs with regulatory function is not known with precision. In particular, the shaded overlap may be
larger on the left- or on the right-hand side [panels (B) versus (C)]. In case (B), evolutionary analyses are more re-
warding than in case (C).
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no conservation (across mammals) in 50% of the

functional elements, see also [20].

Towards a theory of gene regulatory
network evolution
The design and evaluation of computational analyses

usually benefits from some ‘theoretical’ understand-

ing. In this case, such understanding consists of

general principles that are observed when we inspect

gene regulatory networks in today’s species, compare

them, and try to come up with most parsimonious

(or, most likely) explanations for our observations.

For gene regulatory networks involved in devel-

opment, Carroll [21] derived the following

principles, which can motivate and guide computa-

tional analyses.

� ‘Mosaic pleiotropy’ and ‘heterotopy’ reflect that

developmental regulators participate in a multi-

tude of processes; they are promiscuous in time

and space. Therefore, computational analyses

must consider that data (e.g. on transcription

factor binding and gene expression) and subse-

quent results/conclusions are dependent on space

(tissue) and time. Generalizations along these two

dimensions are often not permitted. However, we

can study how this regulatory diversity may have

evolved.

Bioinformatics developers have to be aware of the

limitations that can be expected due to these two

attributes of gene regulatory network evolution.

Pleiotropy (for example, the co-option of regulatory

elements for some novel biological phenomenon)

may invalidate any conclusions of a straightforward

evolutionary inference, but without background

knowledge, it cannot easily be inferred.

� ‘Ancestral genetic complexity’, ‘deep homology’,

‘functional equivalence of distant homologs’ and

‘infrequent toolkit gene duplication’ are four

principles, on which computational evolutionary

analyses of (developmental) gene regulation rely.

Basically, these principles reflect the existence of

conserved ‘network kernels’ ([16], see above).

More specifically, ancestral genetic complexity

refers more or less directly to these kernels;

Carroll writes about ‘similar toolkits’. Without an-

cestral complexity, (computational) evolutionary

inferences would stop early on when going back

in time, because different entities of today would

map to the same ancestral ones. Developmental

processes such as heart formation are governed

by deeply conserved homologous gene regulatory

networks, enabling ‘deep’ computational infer-

ences. Often, the ‘toolkit proteins’ are distant

homologs that can nevertheless functionally

substitute for one another, and they do not tend

to be subject to duplication, possibly because

developmental processes are rather sensitive to

gene dosage. The latter two properties can

simplify evolutionary analyses of function and

regulation.

The four ‘enabling’ principles are at the same time

challenging bioinformatics developers, in three ways.

First, for homology to hold and to be useful, the

right set of species must be selected. If the species

are too closely related with respect to the regulatory

process under study, no evolutionary steps can be

inferred. Such information may of course still be

useful; for example, high conservation of a regulatory

network between rhesus monkey and human may be

important for a pharmaceutical application. If the

species are too far apart, homology becomes un-

detectable (if it exists at all) and evolutionary recon-

struction cannot be successful. Most importantly

though, species must also be selected based on the

ready availability of reliable data. Second, integration

of auxiliary data on the experimentally validated

functional equivalence of homologous proteins can

support statements on high evolutionary conserva-

tion of the role of these proteins in regulation.

However, there is a lack of databases specialized on

such data. Third, data on the duplication history of

relevant genes can be of direct relevance to the pro-

cess of evolutionary reconstruction. Such data are

available at the NCBI Homologene database, and

at the EBI Ensembl website.

� ‘Modularity of cis-regulatory elements’ and ‘Vast

regulatory networks’ are principles that re-iterate

the complexity of (developmental) regulation.

Pleiotropy of the ‘toolkit proteins’ and their cor-

responding heterogeneous expression in time and

space is made possible by a choice of regulatory

elements, which a large gene regulatory network

selects from. Vast networks are also a consequence

of the pleiotropy of the downstream regulators

which they have to control. To some degree, plei-

otropy implies conservation ‘in trans’: the overall

profile of the binding sites of a transcription factor
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is conserved because a change would have a multi-

tude of effects. In turn, changes ‘in cis’ tend to

be non-catastrophic: they just affect the regulatory

element of a single gene. Nevertheless, the debate

on ‘cis versus trans’ continues [22–24] and compu-

tational models of the evolution of regulation

depend to some degree on its conclusion. Most

likely the conclusion is a synthesis in the end,

i.e. ‘cis and trans’: Changes in the transcription

factors themselves and in the regulatory regions

of the genes probably play distinct yet overlapping

roles in evolution.

For computational inferences, it would be most

interesting and useful to explicitly consider the

co-evolution of the regulators (transcription factors,

etc) and their network on one hand, and of the

regulatory elements on the other. For example,

the duplication or mutational change of a tran-

scription factor may go hand-in-hand with a partial

re-organization of the regulatory regions of its target

genes.

In Figure 3, the eight principles and their

relevance for the computational inference of gene

regulation are summarized, including some open

questions and the bioinformatics challenges related

to these principles. In summary, Carroll’s obser-

vations imply that bioinformatics analyses of the

evolution of gene regulation are not futile: there is

something to be discovered due to ancient conser-

vation, even though the complexity of the phenom-

ena (and the high amount of volatility and noise)

render the task difficult, especially if we want to re-

construct events that happened millions of years ago.

COMPUTATIONALAPPROACHES
Evolutionary bioinformatics and gene
regulation
Tools and software for estimating, analyzing and/or

visualizing the evolution of gene regulation are rare.

In the next section we will describe the few

approaches that we are aware of. Some aspects can

be analyzed with standard tools, though. Using

methods such as maximum likelihood, parsimony

or Bayesian inference, sequence data are used to

estimate the phylogeny of transcription factor

families, transcriptional co-factors, some regulatory

RNAs and the components of the transcriptional

Figure 3: Carroll’s eight principles and the computational inference of gene regulation. For example, such inference
is eased by validity of Ancestral genetic complexity and Deep homology, andmade difficult by validity of Mosaic plei-
otropy and Heterotopy. At the bottom, some open questions and bioinformatics challenges pertaining to the princi-
ples are listed.
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apparatus itself (see above). One caveat is that these

inferences just consider sequence evolution, ignoring

the evolution of e.g. post-translational modifications

of the regulators, of their variation due to alternative

splicing, etc. Moreover, the inference error is usually

the higher, the earlier the events one wishes to infer.

The complex interplay of the regulators is even

harder to trace back in time. There are a few auto-

mated approaches available to estimate the evolution

of networks [25, 26], using a probabilistic inference

framework. Inferring the evolution of regulatory

elements is also very tricky. Here, most often we

do not even have a good data set of elements in

today’s species to start with! In particular, the few

databases of experimentally validated sites in meta-

zoa/vertebrates (such as ORegAnno [27] and Pazar

[28]) only cover a small fraction of what is known

from the literature (they feature <10% of the sites

curated for the case study below), which is only a

very small fraction of what is there. Moreover, in

contrast to the regulators, regulatory elements have

low information content (binding sites feature a

length of 4–20 bases, approximately), making their

reliable in silico detection exceedingly difficult. Their

experimental detection is also fraught with problems,

because binding invivo (with a subsequent regulatory

effect!) is dependent on context, as described above.

Sometimes, in vitro detection of the binding of a

regulator (transcription factor) using an antibody

(ChIP, see [29, 30]), often together with gene ex-

pression data documenting the up/downregulation

of the regulated gene depending on the expression

of the regulator, may provide a convincing story for a

regulatory effect, but there is no proof. For example,

the antibody may have picked up a protein interact-

ing with the true regulator [31], and the expression

data may just describe correlation, not causality.

As discussed in the section on validation issues,

ChIP-based TFBS data may be no better than com-

putational predictions of conserved binding sites, if

regulatory effect (and not binding) is being asked for.

Many TFBS prediction tools exploit libraries of

known binding motifs and evolutionary conserva-

tion, and usually they infer sets of related sites

(CRMs, cis-regulatory modules, see above). These

modules are believed to be bound by sets of tran-

scription factors corresponding to enhancesomes (see

above). Methods for detecting CRMs have been re-

viewed recently in this journal [32]. Based on the

simple idea that conservation goes with functional

importance, ‘phylogenetic profiling’ [33] suggests

that predicted binding sites are the more likely to

be functional, the more conserved they are. This

basic idea comes with some problems; for example,

conservation may also correlate with distance to

the TSS [34]. Nevertheless, phylogenetic profiling

has been developed further. In the approach by

Kheradpour et al. [35], occurrence of binding sites

in multiple species is weighted by the length of the

corresponding branches in the species tree. Other

recent advances in TFBS/module prediction include

PReMOd [34] and CompMoby [36, 37]. The latter

does not use libraries of binding motifs; instead, it

identifies subsequences (words) that are overrepre-

sented. Detailed models of binding site evolution,

going beyond conservation scores, are employed

by some authors, to improve binding site predic-

tion and alignment (CSMET [38], EMMA [39],

Monkey [40], PhylCRM [41], eSimAnn [42]).

Some binding site identification approaches integrate

a large number of sources of evidence, including but

going beyond sequence data, evolutionary conserva-

tion, and/or ChIP data [43–45]. Finally, Fredman

et al. [46] review (Web) resources to identify and

study conserved regulatory regions in metazoa,

and a very recent interesting review is given by

Vingron et al. [47].

Computational analysis of the evolution
of gene regulation
As described, the ground on which to base inferences

of the evolution of gene regulation is shaky, but such

computational analysis is still a worthwhile effort.

For once, insights into the genesis of complex struc-

tures are interesting per se. Moreover, they can be

useful since evolutionary insight can improve our

understanding of today’s data, as demonstrated

below in case of a gene involved in regulation of

pluripotency. Finally, and most importantly, evolu-

tionary analyses may result in by-products, which are

predictions about entities or relationships in today’s

species based on the evolutionary analysis. The sim-

plest example of this kind of thinking is phylogenetic

profiling, yielding predicted TFBSs, as described

above. As far as the author is aware, the only tool

attempting to directly infer the evolution of gene

regulation from the DNA perspective (that is, the

gain (and loss) of regulatory elements and modules

in phylogenetic history) is ReXSpecies, the first ver-

sion of which was published in 2008 [48]. Given a

gene to be analyzed, binding sites are predicted in

its conserved upstream or downstream region, for
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multiple species. Then, the most parsimonious scen-

ario for the evolution of these sites is computed and

visualized, using a standard phylogenetic tree of

the species. Finally, as by-products, sets of predicted

binding sites (modules) are identified and ranked

according to a measure that highlights the ‘most

interesting’ ones. These may be binding sites

gained or lost together in subtrees of the species

tree. Apart from ReXSpecies, if a user intents to

analyze the evolution of the regulatory elements of

a gene, she/he can inspect the corresponding gen-

omic region in a genome browser such as UCSC,

and investigate species-specific conservation tracks.

An example for such an analysis is provided towards

the end of the article.

Validation of computational analyses
of the evolution of gene regulation
A crucial aspect of computational analyses is their

validation. There is no ‘time machine’, so how do

we know that any advances in understanding are

valid? An indirect solution is to test ‘by-products’.

If they are valid, the evolutionary inferences are

supposed to have some validity as well. One ‘by-

product’ is predictions about gene expression levels

of regulated genes. However, correlations between

gene expression levels of regulators and regulated

genes are not necessarily indicating causality.

Another by-product, predicted binding sites, may

be validated by ChIP data. However, ChIP data de-

scribe binding, not regulative effect, so validation

suffers from the ‘conserved versus binding’ dilemma:

Conservation of binding sites may be an equally

good, worse, or even better indication of regulatory

effect than physical binding as measured by ChIP

[35, 49–51], as visualized in Figure 2. For example,

using insect muscle genes for validation, Stark et al.
[50] reported that in the regulatory regions of

muscle genes, evolutionarily conserved predicted

binding sites of muscle-specific transcription factors

were as enriched as binding sites of the same tran-

scription factors found by ChIP. Moreover, Cheng

et al. [52] studied GATA1 binding sites and found

that conservation correlates with functional activity.

Most recently, Balmer and Blomhoff [53] conducted

a case study of experimentally validated retinoic-

acid-related nuclear receptor binding sites observing

that a superficial analysis reveals a conservation rate

of 58%. However, specific consideration of over-

predictions (i.e. changing the status of some binding

sites to unvalidated based on careful evaluation of

experimental evidence) and of compensatory evolu-

tion (i.e. counting a specific case of binding site turn-

over as a case of binding site conservation; see their

paper for a discussion) yields a conservation rate as

high as 94%. Although Balmer and Blomhoff believe

that their case study covers a representative set of

binding sites, further investigations are definitely

necessary.

INSPECTINGTHE EVOLUTIONOF
GENEREGULATION USINGTHE
UCSCGENOME BROWSER
In the following, we will briefly investigate the

evolution of the regulation of the mouse Sox2

gene involved in pluripotency [54]. We exemplify

the use of pre-computed multi-species alignments

available at the UCSC Genome browser [1], sup-

plemented by information on regulatory regions

and TFBSs obtained from the literature. The pre-

computed multiple alignment used is the 30-way

Multiz alignment, including 30 species ranging

from fish to human. The regulatory elements are

taken from the literature, as listed below. The align-

ments are visualized in gray scale in Figure 1, where

black blocks correspond to high similarity, and grey

blocks correspond to low similarity (see the figure

legend for more information). In general, the

amount of similarity is highest between mouse and

rat, and moderate between mouse and other mam-

mals, but traces of conserved non-coding elements

can still be found in fish. (The UCSC 30-way Multiz

alignment may have some false positive data; these

are regions deemed conserved while in fact they are

not, due to misalignments. However, it definitely

features a large amount of false negatives, due to

misalignment and, more importantly, due to missing

data.)

More specifically, the N2 region involved in

neural regulation [55] as well as in pluripotency

(including validated Stat3 [56], Gli [57] and Oct4/

Brn1/2 [58] binding sites) is conserved up to fish.

The other regions involved in neural development

[55] (N3, N4, N5) are also found in fish (N1 can be

traced back to Xenopus frog). In contrast, the bind-

ing sites involved in pluripotency, around the down-

stream auto-regulatory Oct/Sox binding site [59],

the downstream Esrrb binding sites [60] and the

proximal Stat3 [56] and HIF1alpha [61] binding

sites, are found conserved up to platypus, with the

exception of the first HIF1alpha binding site.
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In summary, the hypothesis emerges that neural

regulation of Sox2 is as old or older than regulation

implicated in pluripotency. These two overlapping

sets of conserved regulatory elements exemplify

‘mosaic pleiotropy’, ‘heterotopy’, ‘ancestral genetic

complexity’, ‘deep homology’ and ‘modularity of

cis-regulatory elements’ as described by Carroll.

Given experimental and/or predicted binding sites

for a gene of interest, the reader can use the UCSC

genome browser to perform analyses similar to the

Sox2 analysis above. Towards this end, the gene

needs to be located and displayed in the genome

browser. After zooming out to display its putative

regulatory region, information on the binding sites

has to be added as a custom track, and it can then be

correlated to the tracks describing evolutionary con-

servation. In case of human, a pre-computed track of

predicted binding sites called ‘TFBS Conserved’ is

part of the set of ‘Regulation’ tracks and it can be

displayed directly. Given information on binding

sites and on conservation, the evolutionary age of

specific regulatory elements can then be estimated.

As discussed above, an appropriate selection of

species and integration of auxiliary data (e.g. on

functional equivalence of homologous transcription

factors) increase the chance of generating correct

inferences. In the long term, a pipeline inferring

both the evolution of regulatory elements and of

the network of regulators (transcription factors,

etc.) is desirable. A statistical (e.g. Bayesian) approach

toward modeling such a complex evolutionary scen-

ario of co-evolution may be the way to go forward.

Currently, many of these tasks can only be done

manually: Species selection relies on expert know-

ledge. Data integration is only supported in part

(but gene trees from the Ensembl website may

be integrated quite easily). Finally, the study of

co-evolution of regulatory elements and the net-

work of their regulators is just beginning.

Key Points

� Bioinformatics tools and software for investigating the evolution
of generegulation are still in their infancy.Onereason is the com-
plexity of gene regulation itself, not to mention the additional
complexity of the evolutionary processes acting on it.

� At the time of writing, investigators can check genes of interest
using genomebrowsers, and find out about evolutionary conser-
vation in the putative regulatory regions. Using ReXSpecies
[48], they can obtain visualizations of parsimony-based recon-
structions of the evolution of (predicted) TFBSs.

� Validation of reconstructions is possible in part by investigating
their by-products, e.g.TFBSshighlightedby investigating the evo-
lution of binding across a species tree. However, experimental

validation of predicted binding sites, e.g. by ChIP data, suffers
from imprecise binding site location data, and from the ‘con-
served versus binding’ dilemma: It is not easy to assess whether
binding found by ChIP or evolutionary conservation is the
better indicator of regulatory effect.

� A theoretical framework would be very helpful. Towards this
end,Carroll’s article [21] may lay a foundation. From its analysis,
we derive four recommendations: (i) Select an appropriate set
of species. (ii) Integrate auxiliary data such as functional conser-
vation. (iii) Attempt tomodel the complex process of gene regu-
lation including co-evolution of regulators and regulatory
regions. (iv) Be aware of the various limitations of inferring the
evolution of gene regulation, due to pleiotropy, heterotopy, etc.
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