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abstract: The totipotent zygote gives rise to cells with differing identities during mouse preimplantation development. Many studies have
focused on analyzing the spatio-temporal dependencies during these lineage decision processes and much has been learnt by tracing transgenic
marker gene expression up to the blastocyst stage and by analyzing the effects of genetic manipulations (knockout/ overexpression) on embryo
development. However, until recently, it has not been possible to get broader overviews on the gene expression networks that distinguish one
cell from the other within the same embryo. With the advent of whole genome amplification methodology and microfluidics-based quantitative
RT–PCR it became possible to generate transcriptomes of single cells. Here we review the current state of the art of single-cell transcriptomics
applied to mouse preimplantation embryo blastomeres and summarize findings made by pioneering studies in recent years. Furthermore we use
the PluriNetWork and ExprEssence to investigate cell transitions based on published data.
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Introduction

Importance of single-cell transcriptomics
for embryology

Embryo development starts out with a single fertilized oocyte that has to
give rise to all cell types and tissues needed for the establishment of a
whole organism. After fertilization, the embryonic gene expression
program is activated as the mouse zygote starts dividing and progresses
through the preimplantation stages of development until, at Day 3.5, a
blastocyst consisting of three distinct lineages, namely trophectoderm
(TE), primitive endoderm (pEnd) and primitive ectoderm (pEct, or epi-
blast), is formed. While the TE and pEnd will give rise to extraembryonic
tissues, the cells of the primitive ectoderm are considered pluripotent,
and are the precursors of the actual fetus. How cellular heterogeneity
arises from a single cell in a concerted manner is not fully understood.
However, many hypotheses about the underlying regulatory mechan-
isms do exist, and most of them are not mutually exclusive. A common
assumption is that lineage-determining molecules are distributed asym-
metrically within a cell, so that after cell division the two daughter cells
would not inherit the same set of instructions, leading to different cell
types. Also much evidence hints at the importance of cell location
within the developing embryo (Rossant and Tam, 2009). Once the
embryo reaches the 16-cell stage, some cells will be located in the
inside of the embryo while others will still be in contact with the sur-
roundings. Cell location is assumed to impact fate decisions of these

cells through cell–cell contact-dependent signaling pathways (Nishioka
et al., 2009). Further, it has been proposed that lineage decisions are
also governed by stochastic processes at the level of gene regulation
(Wennekamp and Hiiragi, 2012).

The above studies rely on labor intensive and time-consuming
approaches, such as the use of transgenic mouse models (reporter
genes), immunofluorescent analyses (labeling of marker genes) and ex-
tensive embryo manipulation (dissociation and aggregation). These
approaches have substantially advanced our knowledge of how differ-
ences arise during preimplantation development. However, they are
limited in that they are only able to assay relatively few genes at a time.
Therefore, they cannot aspire to providing acomprehensive understand-
ing of the transcriptional changes that ultimately determine cell fate.
However, the recent availability of high-throughput single-cell gene ex-
pression data within the developing embryo has the potential to signifi-
cantly advance the field of developmental biology.

Single-cell and blastomere
transcriptomics: state of the art

Recent advances in single-cell transcriptomics
It is not until the last few years that methods have been developed that
allow for the analyses of minute specimens such as single, isolated
cells. The early embryo contains rare cell types, which exist only transi-
ently. While microarray technology has become a standard procedure in
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biology, microarrays can only detect sequences homologous to the
probes on the array, making the technology prone to false negatives
and largely blind to alternatively spliced transcripts. More recently,
next generation sequencing (NGS) has become a driving force in molecu-
lar biology. In contrast to microarrays, almost all nucleic acids present in a
cell can be sequenced and quantified by this method. Because it would
enable the reconstruction and analysis of entire organismal cell lineage
trees, single-cell NGS has the potential to significantly advance our
understanding of the mechanisms that lie at the basis of developmental
biology. However, despite advances in RNA sequencing, it is not current-
ly practicable to sequence RNA directly from single cells. Instead, RNA
first needs to be converted to cDNA and amplified. The losses and noise
introduced by this procedure lead to appreciable errors. Although not
routinely available yet, nanopore-based devices are now opening new
horizons, and should eventually permit sequencing of RNAwithout amp-
lification (Branton et al., 2008; Ayub et al., 2013). Nevertheless, micro-
arrays remain popular. Microarrays are relatively inexpensive and
widely available, and produce easy-to-analyze data. NGS data remain
costly and decidedly difficult to process computationally, but provide
substantially more detail. Finally, another highly quantitative and sensitive
technique that is commonly used to analyze gene expression at the tran-
scriptional level is real-time quantitative PCR (qPCR). However, its appli-
cation is limited to relatively small numbers of different transcripts.

Recent advances in blastomere
transcriptomics
Pioneering work has been done by Tang et al. (2009), who improved the
cDNA amplification protocol to successfully quantify the transcriptome
of single mouse oocytes and blastomeres from a 4-cell stage embryo
using RNA sequencing (RNA-Seq). The same study showed for the
first time that multiple transcript isoforms are simultaneously expressed
in the same cell for hundreds of genes. Notably, most transcript isoforms
remain undistinguished when using microarrays. A year later, Guo et al.
(2010) employed high-throughput single-cell qPCR to describe the ex-
pression of 48 pre-selected genes in �500 individual cells corresponding
to mouse preimplantation embryos, from the zygote up to the blastocyst
stage. We inspect their data in more detail below. Microarray technology
was subsequently applied to single blastomeres of 2 and 3 cell embryos
and to subcellular structures of oocytes and zygotes by VerMilyea et al.
(2011), who described asymmetries in the transcriptomes within sub-
structures of mouse oocytes, but were not able to detect differences
between individual blastomeres after cleavage. More recently, Tan
et al. (2013) followed up on the fate of mouse blastomeres using a com-
bination of microarrays and qRT-PCR. They profiled pooled embryos,
single embryos, and individual blastomeres, and conjectured that Oct4,
Sall4 and Nanog act as the main regulators of preimplantation develop-
ment. Focusing on human, Yan et al. (2013) applied single-cell
RNA-Seq to 124 individual cells from oocytes and preimplantation
embryos, from zygote to blastocyst, providing the most comprehensive
description of the transcriptome landscape of human early embryos to
date. Finally, Ohnishi et al. (2014) also used microarrays and qPCR on
mouse single inner cell mass (ICM) cells. They found the cells of the
ICM to be essentially indistinguishable at the 32-cell stage (embryonic
day 3.25), identified novel pEnd and pEct markers, and proposed a
model in which pEnd and pEct lineages segregate within a population
of initially seemingly equivalent ICM cells.

Given a suitable genetic background, RNA-seq enables the simultan-
eous quantification of allele-specific differences in gene expression of
thousands of genes. Particular genes, such as Nanog or Pou5f1, have
been shown to be expressed monoallelically during preimplantation de-
velopment using PCR-based methods (Miyanari and Torres-Padilla,
2012; Pfeiffer et al., 2013). However, the extent of this phenomenon
has only become apparent with the advent of single-cell RNA-Seq.
Thus, Tang and colleagues concluded in 2011 that a rather large
number of genes are only monoallelically expressed in cleavage stage
embryos (Tang et al., 2011). Two years later, Xue and colleagues gener-
ated single-cell RNA-Seq data for a more comprehensive set of preim-
plantation stages, ranging from oocytes to morula, in both mouse and
human (Xue et al., 2013). Based on these data, they were able to identify
and follow paternally and maternally expressed genes in individual mouse
cells, finding that 53% of the 8-cell embryo transcripts and 23% of morula
transcripts exhibit monoallelic maternal expression patterns. Finally,
widespread allele-specific gene expression has been confirmed in a
recent in-depth study based on single-cell RNA-Seq data of mouse blas-
tomeres up to the late blastocyst stage (Deng et al., 2014). This studyalso
suggested that monoallelic gene expression is random, and, possibly, a
dynamic feature of mammalian cells. Random changes in gene expression
are believed to contribute to cell plasticity.

Single-cell transcriptomics enables observations with an unprecedent-
ed high-resolution. For example, in mouse, based on their selection of 48
genes, Guo et al. (2010) showed that expression patterns specific to the
TE, pEnd and pEct can be clearly distinguished by the 64-cell stage. In pre-
vious stages, and in particular in the morula, cells appear to co-express
the transcription factors that have been associated with each of the
three lineages. These results are consistent with the observations of
Xue et al. (2013), who noted that individual cells at the same stage
exhibit very similar global expression profiles from oocyte through
morula. Additionally, splicing patterns can be measured for each individ-
ual cell. Thus, Yan et al. (2013) collected evidence indicating that the level
of alternative splicing within individual human cells depends on the devel-
opmental stage, with �1000 genes expressing multiple transcript iso-
forms within the same blastomere.

In summary, these results illustrate the power of single-cell gene ex-
pression profiling at revealing novel insights into developmental biology
that could not have been gained through traditional bulk profiling
approaches.

Analytical approaches and
challenges in the bioinformatics
of single-cell and blastomere
transcriptomics

Common bioinformatics approaches to
transcriptome analysis
As with other high-throughput datasets, careful interpretation of single-
cell transcriptomic data is essential for generating hypotheses that guide
further research. An individual cell contains a limited total number of
mRNA transcripts. Hence, in contrast to bulk cell sequencing, single-cell
sequencing requires an amplification step, which may introduce artificial
biases. First, the amplification results in a relatively low coverage. Second,
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some transcripts are preferentially amplified. Depending on their magni-
tude, these biases make the bioinformatics analysis challenging, and can
significantly affect the interpretability of the data. Moreover, the total
number of mRNA transcripts in a single cell varies with factors such as
cell size and cell cycle phase (Marinov et al., 2014). This has two conse-
quences. First, the magnitude of the aforementioned biases is likely to
depend on the individual cell. Second, the underlying assumptions of
standard normalization procedures such as RPKM (reads per kilobase
of sequence range per million mapped reads, (Mortazavi et al., 2008))
are likely to be violated. Additional variability between cells arises from
the fact, as indicated by recent studies, that some genes are expressed
in only a fraction of cells, in a rather stochastic manner (Raj et al.,
2006). These are, presumably, genes expressed at low levels in bulk
samples. Marinov et al. (2014) examined these issues in detail and con-
cluded that, at present, it is not possible to confidently distinguish
between biological and technical variability, and proposed the introduc-
tion of spike-in mRNA sequences of known abundance to estimate the
number of RNA transcripts in each cell. Wu et al. (2014) also advocate
for the use of spike-ins to estimate technical and biological variability
between cells. With the same aim, they contrasted the number of
genes detected in combinations of replicate pairs of samples to the
mean total number of genes detected. Their results confirm that variabil-
ity is substantially higher for single-cell than for bulk samples. Finally, as an
alternative methodology that permits a ready comparison of results, they
proposed to compute expression values relative to the median expres-
sion across all transcripts in the cell.

Because single-cell datasets became available only recently, the
number of bioinformatics methods especially designed for the analysis
of these data remains limited (Robert, 2010; Ning et al., 2014). As a con-
sequence, many bioinformatics tools developed for bulk cell sequencing
are routinely applied to single-cell transcriptomic data despite their
known limitations. Therefore, bioinformatics tools are in great demand
to catch up with the increase in single-cell expression data. Analytical
methods applied to the analysis of large-scale transcriptomic datasets
from late-stage embryos produced artificially by in vivo insemination,
IVF and somatic cell nuclear transfer have been reviewed in Rodriguez-
Zas et al. (2008). Such methods comprise differential gene expression
analysis and network inference (e.g. Martens and Apweiler, 2009). Func-
tional analysis based on gene ontology, module, pathway and network
knowledge often furthers our understanding of the underlying regulatory
mechanisms. For example, a recent analysis compared gene expression
data from morula to blastocyst in rat and mouse, looking for species-
specific differences between several pathways (Casanova et al., 2012).
Among others, they found differences in the regulation of the Notch
pathway, a highly conserved signaling pathway that influences differenti-
ation, proliferation and apoptosis during development and whose ma-
nipulation could improve the efficiency of rat embryonic stem cell
(ESC) derivation. All these analytical methods are, in principle, transfer-
able to embryos at any stage.

One of the main challenges in the analysis of high-throughput data is
the recognition of biologically meaningful patterns. One particular
widely-used technique is clustering. Clustering algorithms detect pat-
terns within datasets, grouping together the data to highlight those pat-
terns. One of the simplest clustering approaches applied to the analysis of
gene expression profiles is hierarchical clustering (Eisen et al., 1998). In
hierarchical clustering, relationships among genes and/or samples are
represented by a dendrogram where branch lengths reflect distances

between objects. The definition of the distance measure is crucial to
identify meaningful relationships between those objects. Commonly
used distances include Euclidean distance as well as Pearson and Spear-
man correlation. For instance, in order to identify relationships between
gene expression profiles, each gene is initially assigned to a cluster con-
taining only one element. Next, a pairwise distance matrix is calculated
for all clusters. In this case, the Euclidean distance quantifies the absolute
difference in expression level between two genes, across all samples; the
Pearson (or Spearman) correlation compares the shape of the curves
representing the expression patterns of two genes. Subsequently, the
closest pair of clusters is merged together into a single cluster, reducing
the number of total clusters by one, and the pairwise distances between
clusters are re-computed to account for this change. Distances between
pairs of clusters can be defined in several ways. For complete linkage, the
distance between two clusters is the maximum distance from any object
in one cluster to any object in the other cluster. This procedure is
repeated until all objects in the dataset are clustered into a single
cluster. Hierarchically clustered genes and samples can be analyzed
and visualized using heatmaps. For example, Guo et al. (2010) applied
hierarchical clustering to group the expression profiles of 48 genes
across 159 cells obtained from �64-cell blastocysts into TE, pEnd and
pEct. The major shortcoming of this method is that gene expression pat-
terns are not necessarily expected to be related in a hierarchical form.
Other widely used clustering approaches are the k-means and
k-medoids algorithms (Tavazoie et al., 1999; Gasch and Eisen, 2002;
Huang and Pan, 2006). K-means partitions genes into a set of k clusters,
with the aim of minimizing the sum of squared distances between the
mean of each cluster, or centroid, and its members. Several strategies
have been proposed to initialize this algorithm. Most commonly initial
centroids are simply chosen randomly from the input data. The initial
centroids are then refined iteratively, re-calculating gene memberships
and updating the centroids until convergence. K-medoids is a robust
version of k-means (Van der Laan et al., 2003). The main difference
with k-means is that k-medoids uses an actual member of each cluster
as its centroid (medoid). VerMilyea et al. (2011) compared transcrip-
tome profiles between blastomeres of the same 2-cell embryo. For
this purpose, they clustered the expression profiles into two groups
using the k-medoids algorithm. These clusters were then compared
with random clusters. No difference was detected between the tran-
scriptomes of sister cells in 2-cell embryos. The unsupervised, unstruc-
tured nature of the aforementioned algorithms might pose some
difficulties in the interpretation of the results. Self-organizing maps
(SOMs) (Tamayo et al., 1999) constitute an alternative to classical clus-
tering algorithms, providing similar, and often superior performance on
data with high levels of noise. In contrast to the strict hierarchical clusters
and the completely unstructured clusters produced by k-means, SOMs
allow the user to impose partial structure on the clusters. A SOM consists
of components called ‘nodes’, which represent subsets of the original
data. The nodes are arranged onto a low dimensional lattice. The size
(number of nodes per dimension) and type (rectangular or hexagonal)
of the lattice is chosen by the user. In addition, each node is associated
with a vector of weights, or ‘codebook vector’, of the same dimension
as the input data. The initial codebook vectors of the nodes are
defined by randomly assigning input data to the nodes. Assuming that
we are interested in classifying samples based on gene expression, the
codebook vectors represent gene expression profiles. After initializing
the lattice, an instance from the training data is selected randomly,
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compared with the lattice, and assigned to the most similar node. Simi-
larity is computed based on the codebook vectors, using Euclidean dis-
tance. The codebook vector of the node is then updated to reflect the
new data assignment. The updated codebook vector is a weighted
average not only of the data assigned to that particular node, but also
of the data assigned to its immediate neighbors. As a consequence,
nodes that are relatively close in the lattice will tend to represent
similar original data. The procedure described above is repeated in a
fixed number of iterations. SOMs have, for example, been successfully
applied to identify and characterize subpopulations of glial cells through-
out development based on gene expression changes in single cells
(Rusnakova et al., 2013). Many variations of these basic clustering
approaches have been designed for the analysis of gene expression
data. For example, a novel clustering approach (Buettner and Theis,
2012) that considers the temporal structure of expression datasets
claims to be able to identify different subpopulations of blastomeres in
the 16-cell stage in the dataset generated by Guo et al. (2010). Finally,
dimensionality reduction techniques, such as principal component
analysis (PCA), have also been successfully applied to the analysis of
gene expression data (e.g. Yeung and Ruzzo, 2001). PCA applies an
orthogonal transformation to the original data to obtain a set of un-
correlated variables, the principal components (PCs). The PCs are
ordered such that the kth PC has the kth largest variance among all
PCs. Thus, the first PC accounts for most of the variability in the data.
The kth PC can be interpreted as the direction that maximizes the vari-
ation of the projections of the original data, such that it is orthogonal to
the first k 2 1 PCs. Traditionally only the first two or three PCs are used
for data analysis, since they are supposed to capture most of the variation
in the original dataset. For instance, both Xue et al. (2013) and Yan et al.
(2013) used the two and three first PCs, respectively, to show that cells
from human oocytes and preimplantation embryos can be easily distin-
guished from each other according to their developmental stage.

Sample bioinformatics analysis of
single-blastomere transcriptomic data
In the analysisof expression data generated from early-stageembryos the
challenge is to identify cell subpopulations as early as possible, as well as
the genes determining their differentiation. This is exemplified in Fig. 1,
where we have reanalyzed Guo et al.’s single-cell gene expression data
from 64-cell stage embryos (Guo et al., 2010) to identify the most prom-
inent markers of early embryo differentiation. Independent of the
method chosen, we observed three main clusters of cells. The smallest
cluster, marked in blue, expresses high levels of the classical pluripotency
markers, including Nanog, Klf2, Esrrb, Fgf4, Sox2, Sall4, Klf4, Pou5f1 and
Utf1, and is representative of the pEct within the ICM. The largest
cluster, marked in red, expresses high amounts of Cdx2 and Tctap2c,
and represents the TE. Finally, cells marked in green express high levels
of Gata6, Sall4, Klf4, Pou5f1 and Utf1, and represent the pEnd. While
all these genes are considered markers for the aforementioned cell sub-
populations, most of them are dispensable for blastocyst formation itself.
Indeed, mutant embryos with knocked-out copies of these genes often
form an apparently morphological normal blastocyst. Yet, these genes
seem to become crucial later on. For example, Cdx2 negative embryos
form morphologically normal blastocysts even if the maternal Cdx2 has
been depleted, but fail to hatch and implant (Wu et al., 2010). Also,
total ablation (maternal and zygotic) of Pou5f1 (more precisely, of its

isoform Oct4A) leads to grossly normal blastocysts (Wu et al., 2013).
However, the ICM of such embryos is not pluripotent, and, therefore,
neither ESCs can be derived from these embryos nor is the embryo
able to develop into an embryo proper (Nichols et al., 1998). Similar
results are observed upon ablation of Klf5, a transcription factor that
positively regulates Pou5f1 (Parisi and Russo, 2011). Esrrb knockout
mouse embryos fail to properly develop extraembryonic ectoderm.
Therefore, although Esrrb is regarded as a marker for pluripotency, in
our context it is actually crucial for the establishment of an extraembryo-
nic structure that originates from the pEct (Luo et al., 1997). Similarly,
newborn Utf1 double mutant mice are significantly smaller than their
wildtype counterparts, a phenotype that has been ascribed to the loss
of Utf1 expression in the extraembryonic ectoderm (Nishimoto et al.,
2013). A deficiency in the expression of Fgf4 has more severe conse-
quences. Although Fgf4 knockout embryos undergo the segregation of
the TE and ICM lineages, their ICMs consist only of pEct. Furthermore,
the level of Fgf4 present in the embryo controls the relative proportion
of pEct and pEnd in the resulting ICM (Kang et al., 2013; Krawchuk
et al., 2013). Finally, although not completely understood, the ablation
of Sox2 has similarly drastic effects, causing developmental arrest at
the morula stage (Keramari et al., 2010). In summary, although all the
aforementioned genes are recognized as markers for different lineages,
among the genes analyzed only a few appear to be crucial to the
lineage decisions preceding the formation of the blastocyst.

Interestingly, in the hierarchical clustering, cells of the pEnd appear
closer to the TE than to the pEct. This observation may seem counter-
intuitive as the pEnd and pEct both segregate from the ICM. However,
only the pEct gives rise to the embryo proper, while the pEnd and the TE
are functionally linked in that they form extraembryonic lineages. The
k-medoids approach results in similar clusters (Fig. 1B). Indeed, the
smallest cluster, corresponding to the pEct, comprises exactly the
same cells. The largest cluster, representing the TE, contains 5 cells
more than its counterpart in the hierarchical clustering analysis, while
the opposite is true for the cluster corresponding to the pEnd. Com-
pared with the average pEnd cells, these cells express particularly low
levels of Esrrb, Pou5f1 and Sox2, and are highly variable for other
markers, making their classification uncertain. Nevertheless, these dis-
crepancies highlight that different clustering methods may lead to differ-
ent outcomes. The clusters identified by the SOM (Fig. 1C) are in
agreement in terms of their number, size and general composition
with both hierarchical clustering and k-means. The number of SOM
nodes in each cluster roughly reflects the number of cells segregating
into each of the lineages. Finally, the results of the PCA were visualized
using a biplot (Fig. 1D). The axes in the biplot are the two main PCs,
namely PC1 and PC2, which explain, in total, �60% of the variance in
the data. Each point within the plot is representative of a single cell.
Their relative location relates to the similarity of their expression pat-
terns. Vectors represent the observed variables, i.e. genes, projected
into the 2D plane of the biplot. The angle between two vectors corre-
sponding to two genes shows their correlation (an angle ,908 implies a
positive correlation), while their length depicts the strength of the asso-
ciation between the genes and the PC in the axes. Thus, Cdx2 and
Tcfap2c are both highly expressed in a particular group of cells (in
red), indicating TE. Also, the expression profiles of the two remaining
groups are concordant with the other methods presented. In all
cases, from the single-cell analysis it is evident that the cells do not
express the marker genes in a mutually exclusive manner, suggesting a
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high degree of cellular plasticity. These differences observed among cells
committed towards the same lineage argue for a democratic approach
to lineage patterning, as has been proposed previously (Tabansky et al.,
2013, Zernicka-Goetz, 2013).

Regulatory networks reveal
underlying mechanisms

ExprEssence and the PluriNetWork
Clustering and data reduction procedures do not usually take into con-
sideration the relationships among genes. Therefore, the biological
insight obtained from such analyses is often limited. Alternatively,
many studies have attempted to infer gene regulatory networks from
gene expression data (Marbach et al., 2012). For example, Xue et al.
(2013) inferred a co-expression network directly from their single-cell
RNA-seq data. The construction of such networks is usually

conceptually simple, and different frameworks have been proposed
with that purpose (e.g. Zhang and Horvath, 2005). However, such
approaches have only been shown to be successful for small, well
defined systems (Marbach et al., 2012). Alternatively, network
approaches (reviewed in Ideker and Krogan (2012)) that integrate ex-
pression data and expert knowledge have been proposed as a com-
promise solution. Thus, Xie et al. (2010) explored the dynamics of
the networks regulating embryonic development in three mammalian
species using the program MATISSE (Ulitsky and Shamir, 2007). Given
a high-throughput dataset and a network of genes and proteins,
MATISSE identifies functional modules by comparing inferred and
known interactions. Likewise, the purpose of ExprEssence (Warsow
et al., 2010), which relies on similar sources of biological information,
is 2-fold: first, it reduces the complexity of large high-throughput data-
sets by focusing on known relevant genes or proteins; second, it identi-
fies the interactions associated with the strongest concerted changes in
expression between two biological states or conditions.

Figure 1 Clustering and visualization approaches applied to the expression data obtained for the mouse 64-cell stage cells by Guo et al. (2010). Only the
13 genes that are part of the PluriNetWork (Som et al., 2010) were included in the analysis. Gene expression values were background-corrected, quantile-
normalized and scaled across cells, on a per-gene basis (z-score) for clustering and visualization. (Groups of) Cells differentiating into trophectoderm (TE),
primitive ectoderm (pEct) and primitive endoderm (pEnd) are indicated in red, blue and green, respectively. (A) Hierarchical clustering. Genes and cells
were clustered with a Pearson correlation distance metric and a Spearman rank correlation distance metric, respectively, using complete linkage.
(B) K-medoids for k ¼ 3. The expression values for all PluriNetWork genes of the three cells that are the medoids of the corresponding clusters are
shown on top. (C) Self-Organizing Map (SOM) with 5 × 5 hexagonal topology. The SOM nodes (shown as circles) represent groups of cells. Average
Euclidean distances in gene expression between SOM nodes are indicated with different colors in the panel ‘neighbor distances’. Average gene expression
values for each SOM unit are shown in the panel ‘codebook vectors’. SOM nodes with similar codebook vectors lie closer to each other than those with
disparate codebook vectors. Hierarchical clustering of SOM codebook vectors clearly identifies the three clusters corresponding to TE, pEct and PrEnd. The
boundaries between the three clusters are indicated on the SOM with a black line. In addition, the SOM nodes in each cluster are surrounded with a red, blue
or green line, depending on the lineage. (D) Principal components analysis (PCA) of the expression data. Biplot of cells and genes according to the first two
components of the PCA. Points represent cells. Vectors represent genes. The biplot visualizes the association of cells with gene expression levels.
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ExprEssence is a Cytoscape (Saito et al., 2012) plugin for analyzing bio-
logical networks together with high-throughput data across different
conditions. Given, for example, two transcriptomic datasets and an
interaction network, ExprEssence highlights concerted expression
changes in pairs of genes/proteins that are known to interact with one
another. For this purpose, ExprEssence computes a LinkScore for every
edge in the network and pair of conditions. The LinkScore is a measure
of how concerted gene expression changes are along network edges,
that is, along gene/protein interactions. Thus, the tails of the distribution
of LinkScores constitute good hypotheses for the strongest regulatory
mechanisms controlling the change of interacting genes. The quality of
the results obtained with ExprEssence depends on both the expression
data and the functional network taken as input. Additionally, the fact that
two genes that are knownto interactexhibit strong, concerted changes in
expression does not necessarily imply a causal mechanism, but such
genes and their interaction warrant further theoretical and experimental
work. ExprEssence has been shown to perform well in comparative ana-
lyses (Hatem et al., 2012).

Pairs of concertedly up-regulated or down-regulated genes could also
be identified using standard univariate analysis. However, because
ExprEssence relies on an independent interaction network, it is highly
specific, and biological interpretation of results is guided by the
network. Generally, the use of a network has two consequences: first,
expert-curated knowledge reduces the false positive rate; second,
insights are limited to the genes and interactions represented in the
network. STRING (Jensen et al., 2009) is probably the largest and
most widely-used protein–protein interaction database. STRING con-
tains information from numerous sources, including experimental data,
computational predictions and database mining. The current version of
STRING contains information on over 5 million proteins from over a
thousand species. BioGRID (Stark et al., 2006) is another database of
curated interactions obtained from both high-throughput data and
knowledge mining. Its current version contains �700 000 interactions
between proteins from almost 50 species. IntAct (Kerrien et al., 2012)
is also a database of molecular interactions, populated by data either
curated from the literature or from direct data depositions. It contains
over 300 000 interactions. Finally, the Human Protein Reference Data-
base (HPRD, Keshava Prasad et al., 2009) is a database of curated infor-
mation on human proteins. This resource relies solely in experimentally
derived information, and includes most human proteins. Its current
version contains information on over 40 000 interactions. A drawback
of the aforementioned resources is their limited contextual information.
As cellular behavior is dynamic, interactions are expected to change de-
pending on context. Therefore, databases describing interactions in a
particular context are, in principle, more informative. For example, the
PluriNetwork (Som et al., 2010) is a manually curated protein/gene
interaction network that currently contains 348 genes and has been
developed with the specific purpose of describing pluripotency in
mouse. Thus, it considers the context of pluripotency, but it does not dis-
tinguish among the differences between types of pluripotency (e.g. naı̈ve
and primed states in mouse ESCs). Most importantly for the analysis of
blastomere developmental data, it only describes one ‘target’ of cellular
differentiation, i.e. pluripotency (in the ICM/pEct), but not the ‘source’
cell attribute of totipotency (in the early blastomeres), and the majority
of the interactions it describes are based on knowledge inferred from cul-
tured cells. To our knowledge, no expert-curated network of gene/
protein relationships underlying totipotency has been published to date.

Analyzing the mechanisms behind cell fate
decisions with ExprEssence
To illustrate the application and potential of the aforementioned analyt-
ical methods we analyzed the mouse single-blastomere data of Guo et al.
(2010) and Deng et al. (2014) using ExprEssence in the context of the
PluriNetwork. Guo et al. generated data on �500 individual cells, an un-
precedented and still unduplicated number, from the 1-cell zygote to the
64-cell blastocyst, using qPCR. qPCR is both accurate and sensitive, and
indeed, it is routinely applied to validate data obtained by microarrays
and RNA-seq (e.g. Griffith et al., 2010; Knight et al., 2014). Deng et al.
(2014) investigated gene expression in �250 single cells from embryos
across similar developmental stages using RNA-seq. The dataset of
Guo et al. (2010) comprises mostly genes that are known to be relevant
to developmental biology. This makes it particularly suitable for demon-
strating the aforementioned analytical methods. These methods,
however, have been developed for use on a much broader scale, and,
as we show, can be readily applied to datasets as large as that of Deng
et al. (2014), although with some considerations.

In particular, we investigated the transitions from the 8-cell to the
morula stage (16-cell stage), and from the morula to the blastocyst
stage (32-cell stages). At the morula stage, the embryo consists of
both inner and outer cells. The inner cells are thought to predominantly
be the precursors of the ICM that is established at the blastocyst stage.
The outer cells are more likely to contribute to the TE (Nishioka et al.,
2009). The blastocyst itself consists of cells of the pEnd and pEct,
which constitute the ICM, and of the TE, which covers the ICM (polar
TE) and the cavity (mural TE).

First, from the 48 genes for which Guo et al. (2010) measured expres-
sion values, we selected those that were also part of the PluriNetWork.
This step restricted the analysis to 13 genes, and to 51 interactions in the
PluriNetWork involving pairs of these genes. Next, we applied ExprEs-
sence to quantify changes in those 51 interactions between two develop-
mental stages. For the transition from the 8-cell stage to morula (Fig. 2A)
we identified a total of 26 concerted changes in pairs of interacting genes
(see Supplementary data). Only seven of these changes correspond to
significant changes in the expression of the corresponding genes (see
Supplementary data). The strongest changes among these seven
involve genes with stimulating roles. The two strongest changes corres-
pond to the increase in the expression of Utf1 and its stimulator Pou5f1,
and Cdx2, which stimulates itself.

The large number of genes considered in high-throughput datasets,
such as that of Deng et al. (2014), poses an interpretive challenge. Spe-
cifically, a fundamental problem in the analysis of high-throughput data
is the identification of differentially expressed genes. A number of statis-
tical frameworks and software packages have been developed for this
task, including edgeR (Robinson et al., 2010), DESeq (Anders and
Huber, 2010), baySeq (Hardcastle and Kelly, 2010), NOIseq (Tarazona
et al., 2011), SAMseq (Li and Tibshirani, 2013) and Cuffdiff (Trapnell
et al., 2013). Further, biological interpretation of differentially expressed
genes is necessary to ascertain their relevance. Deng et al. (2014)
detected the expression of �20 000 protein-coding genes. We normal-
ized the raw counts and analyzed the data for differentially expressed
genes using DESeq (Anders and Huber, 2010) in R/Bioconductor
(Gentleman et al., 2004). Seventy percent of the measured genes can
be considered as expressed above background levels. Among those,
we identified differentially expressed genes with a Benjamini-Hochberg
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corrected P-value of ,0.01. Approximately 3000 genes were consid-
ered differentially expressed between any pair of developmental
stages. Strikingly, pluripotency markers such as Pou5f1 and Nanog are
not differentially expressed. Moreover, only 48 out of the �3000 differ-
entially expressed genes are included in the PluriNetWork. This lack of
statistical enrichment may reflect the focus of the PluriNetWork on
data derived from stem cells, and discrepancies with the biological func-
tions and processes underlying embryonic development. Furthermore, it
is noteworthy that mouse ESCs exist in at least two distinct states of plur-
ipotency, naı̈ve and primed, which resemble epiblast cells in embryonic
days 4.5 and 5.5 mouse embryos, respectively. While all cultured

pluripotent stem cells are thought to share the core pluripotency
network of Oct4, Nanog and Sox2, different subtypes respond differently
to certain signaling triggers. For example, FGF/Erk signaling promotes
the transition from a naı̈ve to a prime state, but prevents primed ESCs
from reverting back to the naı̈ve state (Nichols and Smith, 2009). The
PluriNetWork describes direct interactions that have an influence on
pluripotency in the mouse model system. The information on the
interactions stems from all possible sources (different types of pluripo-
tent embryonic cells and cultured pluripotent stem cells). Hence, the
PluriNetWork can be regarded as broadly applicable to general
pluripotency-related questions. However, it is less specific for the

Figure2 Concerted changes in pairs of genes for transitions between 8-, 16-, and 32-cell stages of mouse embryos. (A) Concerted changes in transitions
from 8-cell stage to morula. The expression values for each gene at the two states considered are indicated by the color of the corresponding node (left half:
8-cell stage, right half: 16-cell stage). The direction and amount of change of a given interaction or LinkScore (see Supplementary data) is indicatedby the color
and width of the edges; in general, blue edges correspond to negative LinkScores, and yellow edges to positive LinkScores. (B) Hierarchical clustering of ex-
pression patterns in 32-cell stage cells. Genes and cells were clustered with a Pearson correlation distance metric and a Spearman rank correlation distance
matrix metric, respectively, using complete linkage. Expression values for the 48 genes measuredby Guo et al. (2010) were background-corrected, quantile-
normalized and scaled across cells, on a per-gene basis (z-score) before clustering. Only genes that are part of the PluriNetWork (Som et al., 2010) are
visualized. (C) Concerted changes in transitions from morula to inner cell mass. (D) Concerted changes in transitions from morula to TE.
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analysis of data from early developing embryos, since the emergence of
the pluripotent pEct is only one of the processes that unfold during the
differentiation of the totipotent zygote to form a blastocyst containing
all three germ layers. In addition, in this specific case, only a handful of
genes are actually known whose mis-expression would halt the develop-
ment of a mouse embryo prior to the blastocyst stage. Indeed, a PCA
based on the �3000 differentially expressed genes shows clusters of
cells from embryos at the same developmental stage (Fig. 3A), suggesting
that among these genes there are some that are either fundamental to
development or tightly regulated by those genes that are. In any case,
the set of identified differentially expressed genes most likely comprises
both genes involved in specifying early lineage identities as well as false
positives, and further experimentation (knockdown/overexpression of
candidate genes) is necessary to confirm their individual roles. This is a

typical example of how the bioinformatics analysis of high-throughput
single-cell transcriptomics data can lead to the generation of novel hy-
potheses. Additionally, similarly to the analysis we performed on Guo
et al.’s data, we explored the profiles of the �3000 differentially
expressed genes identified in Deng et al.’s data using ExprEssence and
the PluriNetWork to identify the interactions associated with the stron-
gest expression changes between the 8-cell stage and morula. Interest-
ingly, the only significant concerted change corresponds to the
self-activation of Cdx2 as the expression of Cdx2 increases. This result
is in agreement with the critical role of Cdx2 in TE specification discov-
ered in the data of Guo et al. (2010) and reported in the literature (e.g.
Jedrusik et al., 2010).

The 32-cell stage cells investigated by Guo et al. (2010) can be clearly
divided into two groups of similar size according to their expression

Figure 3 Clustering and visualization approaches applied to the expression data obtained for the mouse embryonic cells from zygote to late blastocyst by
Deng et al. (2014). Analyses are based on the expression profiles of 48 genes that are both differentially expressed and part of the PluriNetWork (Som et al.,
2010). Raw read counts for each protein-coding transcript were downloaded from the Gene Expression Omnibus (GEO, accession number GSM1112490).
Normalization and differential expression analysis was performed using DESeq (Anders and Huber, 2010) in R/Bioconductor (Gentleman et al., 2004). Dif-
ferentiallyexpressed genes were identified as those genes with a Benjamini-Hochberg corrected P-value of ,0.01. (A) PCA. (B) Hierarchical clustering. Genes
and cells were clustered with a Pearson correlation distance metric and a Spearman rank correlation distance metric, respectively, using complete linkage. (C)
Box plots indicating the expression values (log2) of three lineage-specific markers in the two main clusters defined by the hierarchical clustering in (B).
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profiles (see Fig. 2B). Cells in one of the groups display significantly higher
expression levels of Pou5f1, Nanog, Gata6 and Sox2, and significantly
lower expression levels of Cdx2 when compared with the cells in the
other group. This is consistent with differentiation into ICM and TE, re-
spectively. From the 16-cell stage onwards, two clusters are also evident
in the data generated by Deng et al. (2014) (Fig. 3B). However, the iden-
tity of the cells in the two clusters is ambiguous, at least if only traditional,
well known cell lineage markers are considered. For example, the cells in
one of the sub-clusters express relatively high levels of Klf2 and Klf4, while
the cells in the remaining sub-clusters express relatively high levels of
Cdx2, consistent with differentiation into ICM and TE, respectively
(Fig. 3C). However, those cells expressing relatively high levels of Cdx2
also express Nanog and Sox2, which are markers characteristic of the
ICM. Indeed, other genes, such as Cdk2ap1 and Hand1, which have
not been previously linked to mouse preimplantation development,
appear to exhibit more regular expression patterns at these stages
than those that are commonly assumed to be lineage-defining, and
that are thus determining the clustering. This observation is rather unex-
pected. On the one hand, it could be an indicator of the high cellular plas-
ticity within the developing embryo. For instance, not all lineage-defining
genes will be expressed in all cells at exactly the same time, hindering the
detection of a pattern. On the other hand, the genes dominating the clus-
tering could constitute important genes that have not yet been linked to
lineage decision processes. Additionally, the generation of the libraries is
expected to have resulted in a certain amount of technical noise, affecting
the effective coverage and read-depth, and ultimately, the differential ex-
pression analysis. In any case, novel candidates can only be revealed by
unbiased approaches, such as RNA-Seq, and analytical techniques
such as those presented here. Further, observed differences between
the data presented by Guo et al. (2010) and Deng et al. (2014) might
also be attributed to variations in the experimental protocols, such as
mouse strains and pre-amplification protocols. Based on the above
observations and for the sake of providing an easily comprehensible
overview of bioinformatics approaches, we restricted the analysis of
the transition from the morula to the 32-cell stage to the data generated
by Guo et al. (2010).

For the transition from morula to ICM (Fig. 2C) we identified a total of
26 concerted changes in the Guo et al. (2010) data. Seventeen of these
changes are considered significant. Concerted up-regulation of genes (in
particular startups of stimulations, marked in yellow) are found in the
network around Sox2, which is up-regulated in the ICM when compared
with the morula. Other canonical pluripotency genes such as Pou5f1 and
Sall4 and their interactions with stimulators such as Klf2 and Klf5 are
down-regulated but still maintain relatively high levels. Sox2 is a special
case, because its expression is relatively low in the morula (the lowest
across the developmental stages measured by Guo et al. (2010)). The
up-regulation of Sox2 in the ICM parallels the down-regulation of Klf2,
reflecting the results of Guo et al. (2010). Furthermore, the up-regulation
of Sox2 is strikingly consistent across the single ICM cells. Indeed, despite
the fact that the ICM lineage appears as a seemingly homogeneous group
when compared with the TE, there is substantial variation among individ-
ual ICM cells (Fig. 2B), with Sox2 being the notable exception. Based on
expert knowledge in the PluriNetWork (in particular, from Chen et al.
(2008) and Zhou et al. (2007)), we know that Sox2 stimulates itself
and Nanog (Fig. 2B) in ESCs, and we hypothesize that these stimulations
are also relevant for the transition from morula to ICM. For the transition
from morula to TE (Fig. 2D) we identified a total of 47 concerted changes

in pairs of interacting genes. Most of them (38) also correspond to signifi-
cant changes in the expression of the corresponding genes. Almost the
entire pluripotency network is shut down (in Fig. 2D stimulation shut-
downs are marked in blue; the few yellow edges indicate the startup of
inhibitions involving Cdx2). The exception is Sox2, whose expression
remains stable (and is therefore not shown in Fig. 2D). In fact, some ex-
pression of Sox2 is necessary for the embryo to progress through the
morula stage (Keramari et al., 2010). Similarly to what we observed for
the transition to ICM and consistent with the results of Guo et al.
(2010), Fig. 2D shows the shutdown of interactions between the down-
regulated pluripotency genes Esrrb, Klf2, Nanog and Pou5f1. Notably, in
the single-cell data of Fig. 2B, Cdx2 stands out as the most consistently
up-regulated gene in the TE. Figure 2D suggests the hypothesis that its
main function is the repression of Nanog and Pou5f1 (interactions in
the network are based on Niwa et al. (2005) and Chen et al. (2009)).
This hypothesis has been in fact recently confirmed (Wu et al., 2010).
Finally, we conjecture that the largely homogenous expression of Sox2
and Cdx2 across single ICM and TE cells, respectively, is likely to be
ascribed to the cell location-dependent hippo signaling pathway. In
outside cells, which develop into TE, the hippo pathway is inactive,
leading to Tead4-induced Cdx2 expression (Nishioka et al., 2009). Con-
versely, the hippo pathway is active in inside cells developing into ICM,
where it would control Sox2. Indeed, Sox2 expression is absent when
the hippo pathway is disrupted by knocking down its crucial kinase com-
ponents Lats1/2 (Lorthongpanich et al., 2013). These observations
argue for a regulation of Cdx2 and Sox2 based on cellular location,
which might explain their homogenous expression levels when com-
pared with other genes that are lower in the regulatory hierarchy.
These examples illustrate how the use of a knowledge network that
has been curated by experts in the field can be combined with expression
datatogenerateplausible hypotheses. Specifically, the single-cell datahigh-
light Sox2 in the ICM and Cdx2 in the TE, and data integration suggested
specific functional hypotheses for these two genes. It goes without
saying that such hypotheses then require experimental confirmation.

Conclusions
Single-blastomere transcriptomics has turned out to be extraordinarily
helpful for developmental biology in general, and for early mouse embry-
ology in particular. Bioinformatics tools are an absolute necessity in order
to interpret and derive biological insight from the extensive datasets gen-
erated with current sequencing technologies. As highlighted above, in
particular large datasets on single cells may lead to results whose inter-
pretation is not straightforward. However, they also open the way for
the formulation of new hypotheses in an unprecedented manner. In
the years to come, we expect single-blastomere transcriptomics to
become even more precise and to be followed by reliable single-
blastomere epigenomics, and, in the long term, single-blastomere pro-
teomics. Scientific progress will certainly not stop then. On the
horizon are ‘omics’ investigations into subcellular compartments, with
high resolution along the temporal axis, towards the ultimate goal of
obtaining a mechanistic model of the earliest developmental steps—
one of the true miracles of life.

Supplementary data
Supplementary data are available at http://molehr.oxfordjournals.org/.
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