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Many methods have been developed to search for homologous
members of a protein family in databases, and the reliability of
results and conclusions may be compromised if only one method is
used, neglecting the others. Here we introduce a general scheme
for combining such methods. Based on this scheme, we imple-
mented a tool called comparative homology agreement search
(CHASE) that integrates different search strategies to obtain a
combined ‘‘E value.’’ Our results show that a consensus method
integrating distinct strategies easily outperforms any of its com-
ponent algorithms. More specifically, an evaluation based on the
Structural Classification of Proteins database reveals that, on
average, a coverage of 47% can be obtained in searches for
distantly related homologues (i.e., members of the same super-
family but not the same family, which is a very difficult task),
accepting only 10 false positives, whereas the individual methods
obtain a coverage of 28–38%.

Sequence-homology search algorithms are important compu-
tational tools in molecular biology. There exist at least three

general classes of techniques used in searches for protein
homologues, namely pairwise sequence comparisons such as
basic local alignment search tool (BLAST), profile-based searches
such as HMMSEARCH, and motif- or pattern-based analyses such
as pattern-hit-initiated BLAST (PHI-BLAST) (1–5).

In a pairwise search, a query sequence is compared to any
database sequence, yielding a confidence estimate that is sup-
posed to indicate the probability of finding a comparably similar
sequence (of the same size) in a database of random sequences.
The comparison is done for every sequence in the database, and
the sequences with highest confidence (‘‘hits’’) are reported. The
most popular pairwise-search tool is BLAST (1).

Simple profile searches make use of position-specific scoring
statistics and are usually more sensitive than pairwise compar-
isons. The introduction of hidden Markov models (HMMs)
seems to provide a firmer statistical basis for profile search. The
majority of currently available profile tools use HMMs (for
example, the HMMER package) (6).

Kinship between protein sequences can also lead to (and thus
be recognized by) the occurrence of particular amino acid motifs
(also known as patterns, signatures, or fingerprints) that were
conserved throughout the evolution of the protein family in
question and are believed to correlate with specific structural
features and function. Motif analysis, therefore, can also be used
for identifying new members of a protein family (7–10). Motifs
are the backbone of homology-search methods such as PHI-BLAST
(5). In contrast to profiles, motifs are usually short, they include
a short stretch of very specific amino acids deemed relevant for
function, and they are denoted by specific regular expressions.

In this study, we will show that the overall performance of
homology searches can be improved if these methods are
combined appropriately. The combination of methods is an
advanced form of a metastudy. Important medical questions are
typically studied more than once, and a metastudy compiles and
analyzes the results of all relevant studies. INTERPRO (11) and
METAFAM (12) present such compilations in protein-family re-

search. Combining methods directly to generate a consensus
result is also common practice in some areas of bioinformatics.
Two algorithms that combine different methods are PCONS (13)
(for fold recognition) and JPRED (14) (for secondary structure
prediction). They improve the accuracy of results considerably.

Here we restricted ourselves to combining the following five
homology-search methods: HMMSEARCH (6), TREESEARCH (15),
position-specific iterated BLAST (PSI-BLAST) (16), PHI-BLAST (5),
and motif alignment and search tool (MAST) (17). All of them can
use a collection of sequences as search input and report a
confidence estimate for each hit. The first two methods perform
profile-based searches by transforming the sequences into an
HMM, and TREESEARCH also uses a phylogenetic tree of the
input sequences. Although PSI-BLAST can be used iteratively,
each new run being based on the output of the previous one, we
use one step of this algorithm only, using a profile read off from
a multiple CLUSTALW alignment of the input sequences as input.
For PHI-BLAST, we use a motif in the form of a ‘‘regular
expression’’ (18) designed to represent a family-specific pattern.
Such an expression can be derived from the input sequences by
using PRATT (10). Then, following a suggestion from the BLAST
software ‘‘read-me’’ file for improving the competitiveness of
PHI-BLAST, we apply PSI-BLAST just once, using a profile derived
from the PHI-BLAST result. Finally, MAST uses profiles derived
from motif analysis.

We combine these five methods as follows: First, given a
collection of query sequences, method-specific input queries
structured according to the specific requirements of the indi-
vidual search algorithms are automatically derived for each of
the five component algorithms. Then, after these algorithms
have been applied by using their respective input queries, we
compute and report a ‘‘consensus hit list.’’

In addition to detailing the resulting consensus tool dubbed
comparative homology agreement search (CHASE), we present a
comparative evaluation of its performance. Needless to say, the
evaluation is performed by testing CHASE on a database that is
disjoint from the database used to calibrate this tool. A stand-
alone version of the CHASE software is available upon request.

Materials and Methods
Homology-Search Methods. All of the five homology-search
methods that we use provide confidence estimates (E values,
as described below) for their results. To perform their task,
they require a query and a target database such as SWISSPROT
(19) or structural classification of proteins (SCOP) (20). The
exact query format requirements, however, vary from method
to method. We developed scripts called ‘‘input processors’’
(IPs) that take a collection of sequences and process them as
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follows to obtain the specific type of input for each of these
homology-search methods.
HMMSEARCH IP. We use CLUSTALW (21) to generate a multiple
alignment that in turn is used by HMMBUILD, available with the
HMMER package, to build an HMM. We calibrate the required
HMM by using HMMCALIBRATE, also available as part of HMMER.
TREESEARCH IP. We use BUILD�COMPOUND, available with TREE-
SEARCH, to generate, as required, a sequence alignment (using
CLUSTALW), a phylogenetic tree [using FITCH (22)], and an HMM
(using HMMBUILD).
PSI-BLAST IP. We use CLUSTALW to align the input sequences and
format the alignment such that it can be used to ‘‘jump-start’’ a
‘‘single-run’’ PSI-BLAST search.
PHI-BLAST IP. We use PRATT to generate a PROSITE-like pattern and
a CLUSTALW alignment to generate a consensus sequence by
relative majority rule for starting a PHI-BLAST search, followed by
a single run of PSI-BLAST.
MAST IP. We use multiple expectation maximization for motif
elicitation (MEME) (23) to generate motifs and convert them into
the required profiles.

Automatic Evaluation of Database-Search Methods and Calculation of
Performance Weights. PHASE4 (24) is a system for the automatic
evaluation of database-search methods. In PHASE4, the perfor-
mance of a method is evaluated by its ability to find a test set of
sequences in a target database by using a training set of
sequences for ‘‘learning’’ (e.g., for calculating an HMM). To
construct test and training sets, PHASE4 relies on target databases
such as SCOP 1.53 (20) that classify proteins [in a strictly Linnean,
i.e., a binary or (according to proper Linnean terminology)
‘‘binomial’’ hierarchical, fashion] according to membership in
families (of closely related sequences) and in superfamilies (of
not-so-closely related sequences). An ‘‘evaluation scenario’’ is
provided by specifying a training and a test set in the target
database. For example, the scenario ‘‘distant family one model’’
is used to evaluate a homology search method for its ability to
report distant relationships in protein families by splitting off one
family from a given superfamily to provide the test sequences
and keeping the rest of the superfamily as training sequences.
Such a test is executed, for each family in turn, for every
superfamily (see Table 1 for commonly used scenarios and ref.
24 for more details).

To evaluate the performance of any method numerically,
PHASE4 offers ‘‘evaluators,’’ which make use of the list of
sequences found that are ranked according to a confidence
estimate, called an E value, or according to a score. In the
simplest pairwise case of standard BLAST searches, given a
normalized pairwise-comparison score S, the E value estimates
the expected number of distinct local matches with normalized
score at least S in an equally large database (16). This concept
can be generalized to other search methods with different

degrees of mathematical rigor. E values are reported by each of
the search methods we want to combine, and our combination
scheme will report a combined E value. For a given test, the
‘‘coverage vs. false-positive counts’’ evaluator compares the
‘‘good’’ and the ‘‘bad’’ guys as follows: It calculates the percent-
age P(k) of true positives (relative to the set of all true positives
in the database) with an E value smaller than or equal to that
threshold value for which exactly k false positives are found, thus
rendering the percentage coverage P as a function P � P(k) of
the absolute number k of misclassifications considered accept-
able. Finally, results are averaged over all tests executed.

We use the PHASE4 system first for evaluating the individual
homology-search methods to be combined in CHASE to derive a
‘‘weighting scheme’’ for the methods that is based on their
performance. Among several available scenarios offered by
PHASE4 that define training and test sequences using the SCOP
database as described before, we use one for detecting distant
relationships, one for detecting close relationships, and one for
detecting very close relationships (see Table 1 for details). An E
value EC � 1,000 was set as a cutoff for all individual homology-
search methods; sequences with a larger E value are not listed.
For each method i, consider the average percentage Pi(k) of
coverage of true positives while considering k misclassifications
(false positives) acceptable. In this case, the average is taken over
the coverage for all three scenarios mentioned above, and the
coverage for a scenario is in turn the average taken over all tests.
Using some fixed number k (in our case, we used k � 50), this
gives rise to the weighting scheme W � W1, . . . , Wn (as listed in
Table 2), where n is the number of methods, and the weight Wi
of method i is set to Pi�(P1 � . . . � Pn), with the average coverage
Pi divided by the total sum of the average coverages of all n
methods so that �i�1

n Wi�1 holds.

A Scheme for Combining Homology-Search Methods. The results of
each homology-search method are parsed to extract specific
information such as the unique sequence identifiers of the hits
and the corresponding E values. Tallying data for all methods, we
obtain a preliminary list of hits, each row containing one
sequence identifier and the corresponding E values reported by

Table 1. Evaluation scenarios defined by PHASE4, given a protein sequence database that is organized into
families and superfamilies

Scenario Description

Distant relationship
(distant family one model)

From a superfamily, each family in turn is chosen to provide the test sequences.
The remaining families within that superfamily provide the training sequences.

Close relationship
(family halves one model)

For each superfamily, half of the sequences of each of its families are chosen as
training sequences and the remaining ones are chosen as test sequences.

Very close relationship
(family half one model)

For each superfamily: For each family, half of its sequences are chosen as test
sequences, and the remaining ones are chosen as training sequences. The sequences
of the surrounding superfamily are ignored in the evaluation.

Note that training sequences are always ignored in the evaluation and that the division into test and training sequences as described
above is performed for each superfamily in turn. For the last model, average performance is calculated over an additional inner loop
that considers each family in turn.

Table 2. Estimated weights for different homology-search
methods based on the performance of the methods using the
odd half of the SCOP database

Method Weight

HMMSEARCH 0.22048
TREESEARCH 0.20404
PSI-BLAST 0.20328
MAST 0.17713
PHI-BLAST 0.19507
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the different methods. This list is similar to the one presented in
Table 3 except for the rescaling and reordering described below.

A major problem in combining confidence estimates is the
variability in the size of the E values estimated by different

homology-search methods. We rescale E values to homogenize
the confidence estimates to combine them. More precisely, to
construct a consensus hit list from these data, we first rescale the
E values Ei(s) obtained by the individual methods i � 1, . . . , n

Table 3. Sample CHASE result

Shown is a CHASE result for SCOP 1.53 superfamily 3.3.1, featuring the FAD�NAD(P)-binding domain. The hits are
sorted by C value. Rescaled E values [as calculated by the scaling formula (Eq. 1) but displayed in terms of the
original E value scale not taking the logarithm] are presented in the five columns on the right. The first 24 CHASE

hits are all true positives. The false positives (numbers 25, 28–30, and 33–41) and the respective minima of their
E values in each column are marked in red. E values in the first 24 rows and the last five columns that are larger
(and hence ‘‘worse’’) than these respective minima are marked in orange, indicating where forming consensus C
values were more successful than the corresponding single method. (Consider, for example, the HMMSEARCH E values
presented in the first of the last five columns. The minimum of these values taken over all false positives is 43, and
the values in rows 17, 20, 21, 22, and 24 are �43 and hence marked in orange.) Apparently, each single method
addresses different aspects of (super)family membership, and a strong showing for some method(s) not coun-
terbalanced by very poor showings for others seems to be a good membership indication that is (independent of
which single method is involved) picked up by our consensus approach.
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for each sequence s to produce E values of comparable size. We
then use the weights as described in Automatic Evaluation of
Database-Search Methods and Calculation of Performance
Weights to obtain a weighted average E value. These two steps
are now described in detail.
Placing methods on a common scale. For each method i and each
sequence s in the database, we report the sequence, provided
its E value Ei(s) is below or equal to a cutoff value EC of 1,000.
Then, one method is chosen to be used as a reference method,
on the basis of which the E values of the other methods are
rescaled (25). In CHASE, we use HMMSEARCH as our reference
method. Next, before doing any E value manipulation, we take
the logarithm to base 10 to transform the E values for all
methods. This transformation is necessary, because E values
may be very close to zero for good database hits, and we must
avoid rounding problems. This way, we obtain for each se-
quence s taken into consideration and each method i � 1, . . . ,
n a number ei(s):� log10Ei(s) that we call the ‘‘e value’’ of the
sequence (with a small e) for conciseness. Next, we use a
regression procedure yielding the slopes and the intercepts for
HMMSEARCH versus TREESEARCH, PSI-BLAST, PHI-BLAST, and
MAST to rescale the e values. For example, ordinary least-
squares regression (26) applied to HMMSEARCH e values
eHMM(s) and corresponding PSI-BLAST e values ePSI(s) provides
the slope a and the intercept b for which the error term
�[eHMM(s) � a�ePSI(s) � b]2 is minimized. Here, the sum is
taken over all sequences s with both e values eHMM(s) and
ePSI(s) below or equal to a certain threshold e0. This procedure
is repeated each time CHASE is applied to search for a protein
family. Slope and intercept depend on the specific data under
consideration: there is no universal data-independent regres-
sion line for the various methods. For each sequence s, we then
put

e*PSI�s� :� min�a �ePSI�s� � b , e0	 in case ePSI�s� � e0,

and e*PSI�s� :� ePSI�s� else. [1]

For a small scaling threshold e0, the formula rescales small e
values according to the regression line and keeps large e values
as they are. Keeping large e values as they are may be useful,
because they may be ‘‘downscaled’’ otherwise, suggesting a

significance that is not there. In the rare case that rescaled e
values exceed the threshold, they are set to precisely this
threshold to keep the ranking as is. For larger e0, fewer e values
are kept as they are. In Results and Discussion, we set e0 �
log10(EC) � 3. Because no hits are considered for which the E
value exceeds the E value cutoff EC � 1,000, all values are
rescaled in this case. Nevertheless, results improve slightly for
smaller e0, as discussed later.

The same scaling procedure is applied to the e values reported
by the other three methods. For notational consistency, we set
eHMM

� (s) :� eHMM(s) for our reference method HMMSEARCH.
Calculating the C value. Once we have the rescaled e values e1

�, . . . ,
en

� for all n methods, we calculate the c value for each sequence
s as the W-weighted sum:

c-value�s� :� �
i�1

n

e*i�s� �Wi.

The final C value (on the original E value scale) is then
obtained as C value(s) :� 10c-value(s), which yields a consensus
over individual homology-search methods. ‘‘Missing E values’’
arise if a homology search method finds a sequence not found by
another, given the E value cutoff EC. In the C value formula,
these missing E values are set to the cutoff E value EC.

Evaluation of CHASE. As noted above, our tool CHASE implements
the above scheme by using five homology-search methods.
Using the weights W1, . . . , Wn of the component search
algorithms calculated once and for all, we compute the re-
gression lines and the resulting C values of the sequences in
each database search. Treating the C values as E values, we can
use PHASE4 again to evaluate the performance of CHASE and
compare its performance with that of the component algo-
rithms. Clearly, the weights that are incorporated in (and thus
the performance of) CHASE depend on the database that was
used for determining these weights. In particular, if a compo-
nent algorithm does very well on that database, it will get a
high weight, implying that it will strongly inf luence the out-
come of the consensus method, making it look good on that
particular database, too.

Fig. 1. Average coverage of CHASE and its component algorithms. Shown is the averaged coverage of true positives permitting 0 and 50 false positives using
SCOP (even half) as the target database and evaluation scenarios provided by PHASE4 (as described in Table 1).
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To avoid this kind of circularity, we split the SCOP 1.53
database into two separate databases: the odd database,
containing every second SCOP superfamily starting with the
first one, and the even database, containing the rest. We used
the odd database to compute the weights, W1, . . . , Wn, as listed
in Table 2, and the even database to evaluate the performance
of the resulting consensus method and compare this perfor-
mance with that of its component algorithms, using again the
three scenarios offered in PHASE4 as described in Table 1. As
before, we used coverage vs. false-positive counts in PHASE4 as
a performance evaluator, and sorting of CHASE hits was based
on the C value. Sequences with a C value exceeding EC � 1,000
are not listed. By default, CHASE sets the E value cutoff EC to
1,000, and the e value threshold used for rescaling e0 to 3 (�
log101,000) so that all values are rescaled. However, other
cutoff values can be specified also.

Results and Discussion
We conducted a comparative evaluation of five homology-search
methods and our consensus method, CHASE. We used three dif-
ferent scenarios offered by PHASE4, as listed in Table 1, to define
distant, close, and very close relationship between SCOP database
entries. If one considers the averaged coverage of true positives at
the cost of zero false positives, as shown in Fig. 1, and ranks the
methods according to their ability to find distant homologous
proteins, CHASE obtains a coverage of 34%, and HMMSEARCH
comes next with a coverage of 28%. Then comes Mast, PSI-BLAST,
TREESEARCH, and PHI-BLAST, with coverages between 27% and
21%. It is important to note that we do not claim to conduct a valid
comparison of these individual methods. Such a comparison would
need to do more justice to their different input requirements. The
comparative analysis of the individual methods, starting with the
same training data of sequences for each, suffers from the appli-
cation of the IPs (described above), by which some of the input
information may be lost. It is also worth noting that methods that
do not perform well on average can still give excellent results in
specific instances, a remarkable fact that clearly needs to be
investigated further.

If we plot coverages of true positives at the cost of 10 false
positives, performance of CHASE goes up, covering 47% on average
in case of distant relationship, compared to 38% coverage by
HMMSEARCH (see Fig. 2). Permitting 50 false positives, as presented
in Fig. 1, these numbers go up to 59% and 49%, respectively.

The advantage of CHASE is smaller in the case of close and very
close relationship, but it still outperforms all component meth-
ods by a good margin. The coverage vs. false-positive count plots
in Fig. 2 for the various PHASE4 scenarios give a more detailed
picture of the coverage of true positives for up to 200 false
positives. If the e value threshold used for rescaling is set to �1
instead of 3, not all values are rescaled anymore in the C value
formula (Eq. 1). Remarkably, CHASE seems to perform even
slightly better in this case. For example, CHASE obtains 36%
coverage of distant relatives at a cost of 0 false positives (�2%),
50% coverage permitting 10 false positives (�3%), and 60%
coverage permitting 50 false positives (�1%).

The results of running CHASE for the SCOP superfamily
featuring the FAD�NAD(P)-binding domain are shown in Table
3. C values along with rescaled E values from different methods
are listed. The names of the sequences from the given family are
shown in black (in the ‘‘description’’ column), and the others (the
names of the false positives) are shown in red. We consider a
family member to be classified correctly by method i if its
rescaled E value is smaller than the rescaled E value of the first
false positive. For the false positives listed by method i, the
minimum rescaled E value is shown in red. Rescaled E values of
family members f that would not be classified correctly using
method i alone are marked in orange. They are larger than the
smallest rescaled E value of the false positives for method i

(printed in red) so that the false positive with the smallest
rescaled E value would precede the family members f in the
ranking based on method i. In the twilight zone of rows 15–24,
CHASE performs well, triggered by the rescaled E values marked
in green, which indicate success for at least one method. In-
specting the consensus hit lists for all protein families under

Fig. 2. Coverage versus false-positive counts. Shown is the PHASE4 evaluation
in the form of coverage vs. false-positive counts for CHASE as well as for the five
component algorithms using three different scenarios (as described in Table
1) offered in PHASE4. Averaging is done over all SCOP families included in the even
half of the database. (The odd half was used to determine the weights used
by the CHASE combination scheme.)
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consideration in the ‘‘distant relationship’’ scenario, we noted
that each method detects specific true positives that would not
be detected if we had restricted ourselves to combining the other
four.

The evaluation that we report is one scenario for CHASE. In
another scenario, CHASE can be used to search for a maximum
number of members of a protein family by providing expert
rather then automatic input information to the component
methods. Such information could, for example, be patterns
described in the PROSITE database (18). These patterns may be
found by PS�SCAN (18). We provide an advanced user interface
by which one can submit protein sequence(s), a sequence
alignment, a profile, or a pattern as input for the underlying
search methods.

In the future, we would like to include more search methods.
In some evaluation scenarios and for some data, methods
based on support vector machines seem to be superior to some
of the methods we combine (e.g., ref. 27), but they lack E
values.

Conclusion
Our results show that combining homology-search methods
provides improved performance over an entire set of scenarios
ranging from the detection of distant to very close relationships
between protein sequences. This observation corroborates, in
the context of protein family research, the frequent claim that
appropriately designed consensus methods can be more reliable
than any of their component algorithms.
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obtained from www.bork.embl-heidelberg.de�Alignment�consensus.
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