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Abstract
Background: Protein-protein interaction (PPI) is fundamental to many biological processes. In the
course of evolution, biological networks such as protein-protein interaction networks have
developed. Biological networks of different species can be aligned by finding instances (e.g. proteins)
with the same common ancestor in the evolutionary process, so-called orthologs. For a better
understanding of the evolution of biological networks, such aligned networks have to be explored.
Visualization can play a key role in making the various relationships transparent.

Results: We present a novel visualization system for aligned biological networks in 3D space that
naturally embeds existing 2D layouts. In addition to displaying the intra-network connectivities, we
also provide insight into how the individual networks relate to each other by placing aligned entities
on top of each other in separate layers. We optimize the layout of the entire alignment graph in a
global fashion that takes into account inter- as well as intra-network relationships. The layout
algorithm includes a step of merging aligned networks into one graph, laying out the graph with
respect to application-specific requirements, splitting the merged graph again into individual
networks, and displaying the network alignment in layers. In addition to representing the data in a
static way, we also provide different interaction techniques to explore the data with respect to
application-specific tasks.

Conclusion: Our system provides an intuitive global understanding of aligned PPI networks and it
allows the investigation of key biological questions. We evaluate our system by applying it to real-
world examples documenting how our system can be used to investigate the data with respect to
these key questions. Our tool VANLO (Visualization of Aligned Networks with Layout
Optimization) can be accessed at http://www.math-inf.uni-greifswald.de/VANLO.

1 Background
1.1 Introduction
In many biological processes proteins play a key role.
They are involved in biological regulation, development,
growth, locomotion, metabolism, and reproduction.

Therefore, the study and analysis of proteins is of high
importance in the fields of biology and medicine. Due to
their chemical structure proteins are able to interact with
each other. These interactions trigger many biological
processes. For example, signals from the exterior of a cell
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are mediated to the interior of the cell by protein-protein
interaction (PPI) of the signaling proteins. Such processes
are also involved in diseases such as cancer. PPIs are fun-
damental to life, and their investigation yields insight into
the evolution of animals [1] and into biochemical func-
tion [2].

For each species its proteins and their interactions form a
PPI network. The PPI networks of different species are
related if they evolved from a common ancestor whose
PPI network can be viewed as their common ancestral net-
work. Learning more about the evolution of PPI networks
helps us understand the networks themselves. PPI net-
works can be aligned by finding proteins with the same
common ancestor, so-called orthologs [3,4]. Investigation
of such an alignment allows for the detection of similari-
ties and dissimilarities between different species. For
example, the interaction network between key regulators
of stem cell pluripotency (the proteins Oct4, Sox2, and
Nanog) is believed to be shared by mouse and human,
while there are differences in the signaling network that
controls the key regulators [5]. In Section 1.2 we provide
the fundamental biological background on proteins, PPI
networks, and their alignment. This description leads to
the formulation of the key questions that one wants to
address by investigating aligned biological networks.

Since tackling these questions requires the simultaneous
exploration of different types of relationships between
proteins, research on biological networks demands the
support of a graphical display of such networks. As biolo-
gists are interested in viewing the interaction of the pro-
teins within one species, but also the alignment based on
the orthologous proteins between the species, standard
graph layouts are of limited use. First attempts to the vis-
ualization of aligned biological networks can mostly be
regarded as ad-hoc approaches in terms of visualization
methodology, see the related work in Section 1.3. With
this paper, we intend to

• present a novel solution to the problem that applies
visualization technology optimizing layout and inter-
action,

• discuss our contribution in terms of visualization
methods and how they relate to existing methods
from other application areas, and

• show how our interactive visual exploration system
is used in practice.

Instead of presenting yet another ad-hoc approach to vis-
ualize aligned biological networks, we built an interactive
visualization system that allows for a systematic explora-
tion of the data. Our system is based on a new 2.5D layout

approach, see Section 2.1, and provides the user with var-
ious application-targeted interaction techniques to visu-
ally explore the alignment, see Section 2.2. The layout has
to fulfill certain specific requirements, which are formu-
lated in Section 1.4. How an application scientist can
interactively and visually explore network alignments is
described in an application scenario in Section 3.

1.2 Protein-Protein Interaction Networks and Key 
Questions
Protein-protein interactions (PPIs) are transient or perma-
nent connections between proteins, and they are impor-
tant for many biological phenomena such as signaling,
transcriptional regulation, and multi-enzyme complexes.
They are explained by molecular adhesive forces between
parts of the proteins (domains) which in turn can be
tracked down to the atomic level. The proteins of an
organism and their interactions form a PPI network.

Interaction networks evolve by the loss and gain of nodes
(proteins) and links (interactions). It is assumed that the
complex networks interconnecting the components of an
organism such as a human being are, like all of life, the
result of a more or less gradual evolutionary process of
descent with modification. Emergence of biological com-
plexity is nevertheless poorly understood, and a deeper
understanding is of utmost importance.

As the PPI networks of different species evolved from a
common ancestor network, we are able to align them. A
network alignment for a number of networks from different
species specifies which nodes (representing the proteins)
in one network correspond to (i.e. are orthologous to)
which nodes in the other networks. This correspondence
may be one to one, or it may relate a set of paralogs in one
species to an orthologous set of paralogs in another spe-
cies. More precisely, we view proteins from one species to
be paralogous if they evolved by duplication after the spe-
ciation event splitting the last common ancestor. Two pro-
teins in one species that evolved from the same protein are
not understood as paralogous if they were already distinct
proteins in the PPI network of the last common ancestor.
In Additional File 1, we provide a more detailed discus-
sion on the biological background of protein interaction
network evolution. In a recent strand of research several
groups have begun to systematically compare interaction
networks between organisms, and the network of one
organism with itself [3]. In the first case, orthologous sub-
networks are inferred, as described above. Paralogous sub-
networks can be detected in the second case. In particular,
the PathBlast tool [6] can detect orthologous paths in two
networks. Given a path or a small network to search for
and a network to search in, it returns orthologs of the
query path/network in the search network, displayed in a
graphical "side by side" output [7,8]. PathBlast also aligns
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networks for more than two species. Another network
alignment approach called "Local Graph Aligner" was
developed based on a spin model [9]. This approach is
used to align several networks and evaluates the statistical
significance of the alignment. Yet another approach, Net-
workBlast [10], uses an efficient representation of align-
ments and infers conserved complexes. The output of
NetworkBlast can be used as input for VANLO. In another
approach, networks are not directly aligned by their graph
structure. Instead, they are aligned based on modeling the
evolution of the networks from a common ancestral PPI
network using Bayesian methodology [11]. This approach
allows the alignment of more than two large networks. It
does not only compute an alignment, it also explains how
the networks evolved.

In biology, scientists are not only faced with PPI networks
but with many other kinds of biological networks includ-
ing regulatory ones that involve DNA-protein interaction
and metabolic ones that include small metabolites as
nodes. These networks are also related by evolution and
can be aligned. Therefore visualization techniques devel-
oped for aligned PPI networks can also be used for these
kinds of biological networks. Analysis of all kinds of net-
works will gain importance, in particular in biomedicine.
After all, complex diseases must be tackled nowadays:
cancer, arteriosclerosis and dementia are all multifacto-
rial. They all have their cause in the interplay of a multi-
tude of factors, many of which corresponding to networks
gone out of order. In this context, comprehensive visuali-
zation can be a trigger of medical progress.

Given aligned PPI networks of different species, biologists
are particularly keen on having means to answer the fol-
lowing questions:

• What is the conserved core of the alignment, i.e., its
most ancestral part?

• What are the cores of the underlying pairwise align-
ments?

• What is new in each network?

The core of an alignment consisting of orthologous pro-
teins in all species that share the same interactions most
likely consists of proteins responsible for the same biolog-
ical process and with the same function. This insight
allows biologists to predict some protein properties from
aligned PPI networks [4]. Furthermore, the core of an
alignment is a good estimate for the network of the last
common ancestor of the species involved. The pairwise
cores are good estimates for the last common ancestor
network of two species. Hence, they should be explored
for the networks of two species that are close in the species

tree. Detection of pairwise cores can help biologists to
reconstruct the evolution of parts of the PPI network.

Newly developed parts in a PPI network are usually
assumed to represent new functionality, that did not exist
before. After being identified, this new part may after-
wards be subject to further investigations. Network com-
parison should allow to find putative errors in one of the
networks, or in the alignment. One hint for an error
(mostly an error in the underlying databases) could be an
edge existing only in one of the species, and the user can
have a closer look, trying to find out what the evidence for
this edge is and whether this interaction really exists.

1.3 Related Work
1.3.1 Graph Drawing
It is intuitive to represent biological networks such as PPI
networks as graphs. In a PPI network the proteins can be
represented as vertices of a graph and the PPIs as edges of
the graph. Therefore, visualizing biological networks is a
special subject of graph drawing which is a well-studied
field in information visualization [12].

The layout of a graph is most important because it deter-
mines the human perception of the graph [13]. In graph
drawing one is generally interested in optimizing the lay-
out of the graph with respect to some properties and con-
straints. Many different approaches exist, depending on
the properties of the graph or on the information one is
interested to visually extract or highlight. Graphs are most
commonly drawn using a 2D layout where vertices are
drawn as nodes and edges represented by lines. Plenty of
algorithms exist for automated graph drawing [14]. Prob-
ably the most prominent approach to layout a graph is
given by the family of force-directed algorithms [15-20].
The goal of these algorithms is to group interconnected
nodes together and to spatially separate non-connected
nodes. Therefore, attracting and repelling forces are
defined and applied for node interference. Typically, all
nodes repel each other using pairwise repelling forces and
all connected nodes attract each other (up to a minimum
distance). Algorithms like the one by Fruchterman and
Reingold [18] or the one by Kamada and Kawai [19] iter-
atively compute a displacement for each node determined
by the defined forces until convergence. The advantage of
these algorithms is their flexibility, i. e. the possibility to
define the forces according to a special application, which
makes these algorithms suitable for many different graphs
in diverse applications. Another iterative approach is to
define an energy function which penalizes bad properties
of the layout, and then to use simulated annealing or
another optimization algorithm for iteratively optimizing
this function [15]. Within the field of biology, a wide
range of graph layout algorithms are considered as can be
seen in the numerous visualization tools for biological
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networks like Cytoscape [21], ProViz [22], VisANT [23], or
VANTED [24].

1.3.2 Visualizing Aligned Networks
Aligned networks can be regarded as a set of graphs, where
the alignment establishes connections between the graphs
or, more precisely, between entities of the graphs (e.g.,
some of the nodes are aligned across the networks). For
visualizing an alignment of PPI networks different
approaches have been considered and are used today. For
a detailed survey on the state of the art in visualizing
aligned biological networks we refer to our report [25],
where we divide the approaches into two main classes,
namely "side by side" and "all in one".

The "side by side" approach, follows the idea to draw the
individual aligned networks next to each other in a 2D
layout and to highlight the aligned nodes by the same rel-
ative position and/or additional edges connecting them
[3,6,26]. The advantage of this approach is that it is able
to intuitively handle paralogous proteins. However, this
approach is inappropriate for large network alignments
and is hardly readable if there are many additional edges
for representing the alignment relation.

The "all in one" approach draws the aligned networks in
just one node-link diagram where one node represents the
orthologous proteins of all networks [27,28]. Obviously,
fewer edges and nodes are needed with this visualization
but problems with the interpretation of the edges and also
with displaying paralogs arise [25]. These problems can be
alleviated to some degree by using the idea of metagraphs
[29].

An appropriate solution that combines the advantages of
both classes is given by using 2.5D layouts [30], where the
individual networks are laid out in 2D and the relation-
ship of the entities is implied by drawing all 2D layouts
simultaneously using the third dimension and by placing
corresponding entities on top of each other. Schreiber
[31] used such an approach for the comparison of differ-
ent biological networks in the context of metabolic path-
ways. However, his approach does not support the
visualization of paralogous entities (proteins). Moreover,
he did not provide any interactive exploration methods
and his approach is specialized for metabolic pathways
and a KEGG [32] like layout.

In terms of visualization methodology, visualizing
aligned biological networks is related to the representa-
tion of evolving graphs. When considering evolving
(dynamic) graphs one deals with one graph that changes
over time, instead of an alignment of related graphs. Sev-
eral approaches for so-called dynamic graph drawing exist
[33-36]. The layout considerations of these approaches

could easily be adopted to laying out aligned networks,
where the split representation, i.e., each time step is
shown in a separate drawing window, corresponds to the
"side-by-side" layout and the merged representation, i.e.,
all time steps integrated into one drawing window, corre-
sponds to the "all-in-one" layout. Some dynamic graph
drawing approaches also consider a 2.5D approach with
each time step drawn in a separate layer where the layers
are placed on top of each other [37,38]. Given the key
questions formulated in the section 1.2, we observed that
they can be more intuitively answered when using our
novel 2.5D layout algorithm, which considers the specific
layout requirements described in Section 1.4. In particu-
lar, following these requirements, paralogs as well as
orthologs can be identified easily.

1.4 Layout Requirements
For the visualization of aligned biological networks sev-
eral approaches exist and they were surveyed and dis-
cussed in our report [25] where we derived some general
layout requirements. We generally assume, as all existing
approaches do, that the layout should be displayed as a
node link diagram. Therefore, the general requirements
for node link diagrams should be met also by a layout for
aligned networks. Such general requirements are:

• All nodes should be clearly separated,

• nodes connected by an edge should be placed close
to each other to prevent long edges,

• the number of edge crossings should be minimized,
and

• available space should be used in an optimal way.

As a network alignment is not just a simple graph without
further constraints. We derived some specific require-
ments that should be met by aligned network layouts.
These specific requirements, designed to address the key
questions outlined in Section 1.2, are:

• The structure of individual networks should be easily
identifiable,

• individual networks should be clearly separated,

• alignment relations, i.e., which nodes and links are
corresponding to which nodes and links in other net-
works, should be shown in a visually intuitive man-
ner, and

• the core of the alignment should be easily retrievable
and comprehensible.
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2 Implementation
2.1 The Layout
We developed a novel interactive visual network explora-
tion system with respect to the requirements specified
above. Its main features are an appropriate aligned net-
work layout and a range of helpful interaction mecha-
nisms to visually explore the alignment.

2.1.1 2.5D Setting
Taking into consideration the approaches discussed in
Section 1.3, our layout is based on a 2.5D setting for the
aligned graphs. The different networks are laid out in sep-
arate equidistant layers placed on top of each other.

To support an intuitive understanding of orthologous
proteins of different networks, orthologs are assigned the
same 2D position across the different layers. Therefore,
the alignment relation is naturally and intuitively embed-
ded into the layout and no additional edges, connecting
the orthologous proteins, are required, as they are in "side
by side". Thus, we only use one type of edge, namely the
interaction edges between proteins, which keeps the visu-
alization simple.

Paralogs are handled such that they are drawn closely
together in a structured way at 2D positions within a well-
defined area around the 2D position of the orthologous
partners. Hence, paralogous structures can easily be iden-
tified.

2.1.2 Strategy
For visualizing aligned networks with the above-men-
tioned layout representations ("side by side" and "all in
one", or 2.5D setting), the networks are first laid out as
node link diagrams in 2D. For the three layout representa-
tions the same layout algorithm can be applied, because
all of them need the individual networks laid out in 2D
with general graph drawing requirements and the
orthologs of the different networks should have the same
position.

To ensure this global layout structure, where the ortholo-
gous sets of paralogs of the different networks are posi-
tioned to the same 2D positions within the respective
layers, the aligned networks need to be handled simulta-
neously. The strategy of our layout algorithm is

1. to build one common graph representing the com-
plete network alignment by merging the correspond-
ing orthologous sets of paralogs into one node,

2. to lay out this merged graph in 2D using known
graph layout algorithms,

3. to split the previously merged paralogs and com-
pute their local arrangement within each network, and

4. to map the networks to different layers, which are
rendered in a 2.5D setting.

The first three steps are independent of the 2.5D setting
such that other settings ("side by side" or "all in one") can
be used, if desired.

2.1.3 Layout Algorithm
Our algorithm consists of four steps, which are described
in this section. In Figure 1, we illustrate the individual
steps by giving an example. The example alignment con-
sists of the two networks shown in Figure 1Ia) and 1Ib),
where nodes with the same color are corresponding. Cor-
responding nodes are orthologs if they appear in different
panels and they are paralogs if they appear in the same
panel.

Merging into one graph
The given network alignment can be understood as one
large graph with proteins as nodes. In a first step we col-
lapse each orthologous set of corresponding paralogs,
into one node. Hence, all proteins orthologous to each
other are represented by a single node in this merged
graph. All edges in the merged graph represent PPIs. The
merged graph for our example is shown in Figure 1II). The
advantage of using a merged graph is twofold. First, the
orthologous proteins are already assigned to the same
position, and secondly, the remaining graph is smaller
and computing its layout becomes easier because the tra-
ditional layout algorithms usually work better on small
graphs.

Computing the layout of the merged graph
The merged graph now is laid out in 2D by applying one
of the graph layout algorithms mentioned in Section 1.3.
For biological networks no additional graph-theoretical
information such as planarity or density can be assumed
a priori. Therefore, no special layout algorithm for graphs
with certain properties can be used. Heuristic methods are
a good choice in this case. In our visualization system we
provide the use of two force-directed algorithms, namely
the one by Fruchterman and Reingold [18] and the one by
Kamada and Kawai [19]. In addition, we provide the use
of a simulated-annealing algorithm [15], as it allows us to
define an energy function adapted to our needs. The user
may choose her/his preferred algorithm or she/he may
simply test all three options and pick the result she/he
likes best.

For our example the new layout is shown in Figure 1III).
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The layout algorithmFigure 1
The layout algorithm. In this example proteins with the same color are orthologous (if they are in different panels in rows 
1, 3, or 4 of the figure) or paralogous (if they are in the same panel). The two networks in Ia) and Ib) are first merged to the 
graph in II). This graph is now laid out, as seen in III). This layout is assigned to the two individual networks as shown in IVa) and 
IVb). In the last step paralogs, that are still merged in the individual networks are laid out and the results are shown in Va) and 
Vb).
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In our simulated annealing approach we have four main
terms. We sum up the lengths of the edges, the number of
edge crossings, and the inverse of the angles between all
pairs of incident edges to penalize these properties. We
also add penalties if two nodes are too close to each other,
in order to always clearly separate all nodes. If nodes con-
sist of paralogous proteins, the lengths of their adjacent
edges are divided by the number of paralogs to allow
longer edges and therefore more space for these nodes.

Undo the merging step
Starting from the merged layout where all orthologous
sets of paralogs have the same position, the final layout is
computed. First the node positions computed for the
merged graph are distributed onto the nodes of the indi-
vidual networks, as shown in Figure 1IVa) and 1IVb).
Afterwards the positions of the paralogous proteins have
to be modified, because they still have the same position.
These layout computations for the sets of paralogs can be
done for each network individually. For one set of para-
logs the free space around the position that is assigned to
the set is determined according to the number of merged
paralogs. Recall that the energy term used in the previous
step allocates more space for merged paralogs. Within this
free space local 2D arrangements for the small subgraphs
of paralogs need to be determined. The local arrangement
we chose for our implementation is to distribute the par-
alogs equidistantly on a small circle within the free space,
where the center of the circle is the previously assigned 2D
position. After this step, the layout of the layers is com-
pleted, see Figure 1Va) and 1IVb). In each of the networks
there was just one set of paralogs to be laid out.

Assigning the 2.5D setting
From the graph layout the 2.5D representation of the
aligned networks is obtained by assigning each network
an individual layer displayed in Cartesian coordinates at
equidistant heights z. For each node, a three-dimensional
primitive is rendered at (x, y, z) where (x, y) are the coor-
dinates computed by the algorithm and z is the assigned
height for the network. The edges are connecting the
nodes inside each individual network and therefore lie
automatically in one layer, i.e. the start- and endpoint
have the same height coordinate z. No edges between dif-
ferent layers are necessary, as orthologous groups are ren-
dered on top of each other and are therefore easy to
identify just by position.

2.2 Interactive Visual Exploration
The layout algorithm presented in the previous section
generates an overall arrangement considering all proteins
and all relations among them. When exploring the data,
the user may be interested in seeing the entire structure,
but typically also wants to concentrate on certain aspects.
We provide interaction mechanisms that support such a

visual exploration and analysis. Since all interactions
operate on our 2.5D graph layout embedded in 3D space,
all views are consistent and embedded into the overall
context.

For the description of the interaction mechanisms that are
supported by our system, we make use of the taxonomy
introduced by Yi et al. [39].

Explore
Since we are using a 2.5D layout, rotation, translation,
and zooming are supported. Different angles highlight
different aspects of the data set.

Reconfigure
Although our 2.5D layout serves as the basis for all explo-
ration tasks, we still support 2D layouts. One reason is
that application scientists are currently used to look at 2D
layouts. Providing the 2D layouts in addition to our 2.5D
layout allows them to easily correlate our visualization to
what they have in mind. We hope that this reduces the
barrier to use our tool. Another reason is that 2D layouts
may be beneficial for non-interactive visualizations which
may be rendered for publications. We support both tradi-
tional 2D layouts, i.e. "side by side" and "all in one".

Encode
We support different color encodings for different net-
works. In addition, nodes can be encoded by shape infor-
mation.

Abstract/Elaborate
When exploring the entire aligned network, showing all
paralogs may hinder the comprehension of the global
structure. Therefore we support an abstraction mechanism
that collapses nodes representing paralogs into just one
node. When investigating a certain substructure these par-
alogs are, of course, important to display therefore we can
undo the abstraction at any time.

Filter
It is obvious that filtering is one of the main interaction
features. In particular, we allow displaying/hiding edges
or even complete individual networks. Of course, filter
operations embed other interaction mechanisms like
elaborating on paralogs.

In addition we found it useful to allow the user to store
layouts for alignments to continue the exploration at a
later time point, and to allow the user to take screen shots.

3 Results and discussion
For our application scenario we decided to use an align-
ment of the PPI networks of five species. We chose the PPI
network of the insulin/IGF1 pathway. This pathway is of
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major importance not just in diabetes research, but it is
relevant to molecular ageing in general [40]. The interac-
tion data for our example is taken from the STRING [41]
Web server (version 8.0), which integrates different kinds
of biological data, for example databases such as KEGG
[32], for building a protein interaction network. We inte-
grated interactions traceable to databases or experiments;
we did not use any data based on other evidence such as
text-mining because they often contain errors. We only
trusted interactions with a high confidence (STRING con-
fidence score >0.7) and we deleted a few interactions that
were listed by STRING under the label 'Experimental Data'
even though they were predicted by orthology (e.g. the
interaction between PI3K and IRS1 in Pan troglodytes has

a score of 0.768 in STRING, but no experimental evi-
dence).

Finally, we manually investigated interactions scoring
between 0.6 and 0.7 and added them, if STRING listed
experimental evidence from BioGRID [42], BIND [43] or
HPRD [44]. For the detection of synonyms and orthologs
and also for the detection of paralogs we used iHop [45],
HomoloGene [46], and Ensembl [47]. For the insulin/
IGF1 network we found sufficient data for human, chim-
panzee, mouse, rat, and fly. In the following we use our
visualization system to explore the network alignment
that is shown in Figure 2. The network of each species is
shown in one layer and they are additionally color coded
as follows: human (pink), chimpanzee (red), mouse

The Insulin/IGF1 PathwayFigure 2
The Insulin/IGF1 Pathway. Alignment of human (pink), chimpanzee (red), mouse (orange), rat (yellow), and fly (gray). The 
layout is computed using our simulated annealing algorithm. All five species are shown and all paralogs (AKT1,2,3 and IRS1,2), 
too. For a better overview only the human network is labeled.
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(orange), rat (yellow), and fly (gray). Two aspects of net-
work evolution and some artifacts due to missing data
catch the eye immediately.

In the 2.5D layout in Figure 2, we can see that the IGF1/
IGF1R part of the network (top right of the figure) is not
found in fly (gray) but it exists in mammals, and we infer
that it evolved in the lineage from the common ancestor
of fly and mammals (called the ancestral bilaterian ani-
mal by zoologists, see http://www.tolweb.org/Bilateria/)
to mammals. This observation is in concordance with
Russell and Kahn ([40], Box 1). More data (on deuteros-
tomic animals at the later branching points along the lin-
eage from the bilaterian ancestor to mammals, such as sea
urchin, sea squirt, lancelet, fish, frog, and/or bird) would
enable us to set a more precise time point at which this
part of the network may have evolved. The fly network
(gray) is devoid of any paralogs; complexity of the path-
way in mammals increased by duplication. The paralogs
that evolved in the mammalian species form two clusters,
the IRS cluster and the AKT cluster, and the visualization
makes it clear that these two clusters of duplicated nodes
are accompanied by a large number of duplicated edges.
Tracking these down in STRING, we observe that the
duplicated edges are derived from KEGG. However, KEGG
does not describe the interactions of each paralog individ-
ually. Instead, it only lists the interactions of one repre-
sentative AKT/IRS protein, and data processing by
STRING was done under the assumption that the interac-
tions are valid for each paralog, an assumption that is not
necessarily true. Thus, the duplicated edges may be a data
processing artifact. On the other hand, if the assumption
is true, the interpretation is that in the insulin signaling
pathway, interactions were usually kept after gene dupli-
cation leading to paralogs. For example, the number of
edges from PI3K to the IRS cluster equals the number of
IRS paralogs (two for human, mouse and rat and one for
fly, see also Figure 2) except for chimp, where for PI3K
there is no interaction with the other proteins, as dis-
cussed below. Such a scenario, if it reflects biological real-
ity and is not a database artifact, indicates that the IRS
paralogs are alternative stopovers in the standard signal-
ing chain from IR to PI3K, via IRS (see [40], Box 1), indi-
cating redundancy. (One specific explanation comes to
mind: interaction data are often pooled over tissue types,
so that it may well be that alternative paths are employed
in different tissues, and these are regulated in a tissue-spe-
cific way.)

Looking at the red network (chimpanzee, or chimp for
short), a large number of interactions (edges) existing in
the other networks are missing. In this situation filtering
out the other networks and only looking at the network of
the chimp and the human one for comparison supports
the exploration. This is done easily and the filtered view is

shown in Figure 3. In chimp, only PDK1, PTEN and AKT
are connected. There are no links (no red edges) connect-
ing PDK1, PTEN and AKT to the other proteins. Here, the
biologist interpreting the network must know two facts
for a correct analysis: (a) human and chimpanzee are very
closely related; their genomes and physiology are very
similar, and (b) mouse and rat together form a group that
is in turn related to the human/chimpanzee group. Thus,
the biologist concludes that the missing edges must be
due to missing data in STRING, and that they are not
yielding insight into network evolution. In fact, chimpan-
zee data are just recently becoming available and it is no
wonder that these are incomplete. Moreover, the biologist
can use the network alignment to predict missing compo-
nents (nodes and/or edges) in the chimpanzee network
which is expected to be almost identical to the human
one.

The interaction of fly FOXO1 (also known as dFOXO, Afx
or CG3143) and IR (Figure 2 center) is only displayed in
case of fly. Tracking down the link in STRING, an entry
from the BIND database [48] is listed as evidence, which
in turn cites Puig et al. [49]. Their abstract includes the
sentence "dFOXO [...] activates two key players of the
dInR/dPI3K/dAkt pathway: the translational regulator
d4EBP and the dInR itself". In short, FOXO activates InR
in fly, where InR (Insulin receptor) is the ortholog of IR
(Insulin receptor) in mammals. It is possible that the feed-
back loop IR → PI3K → AKT → FOXO → IR (see also [40],
Box 1) is not just active in fly, and that it also exists in the
other species. Here, our visualization yielded an interest-
ing hypothesis, which is not so obvious in a series of "side
by side" renderings.

Using filtering operations to mask out chimp, rat, and fly
allows an easy comparison of human and mouse as
shown in Figure 4. In this Figure the eye can easily identify
the identities and the differences. First of all, there is no
difference with respect to the nodes. However, some links
in human are missing in mouse. For example, these are
links from SIRT1 to FOXO1, from IR to IGF1R, and from
IGF to IRS. All these links can be traced back to human-
specific data incorporated into STRING; the links are
reported in a publication supporting a BIND entry [50] or
they are derived from HPRD [44] and PID [51].

Finally, with the help of our visualization we are able to
identify the core of the network alignment, which consists
of the nodes and edges that are present for the largest
number of species. Setting the minimum species thresh-
old to 2, the core does not include the link between FOXO
and INSR (only present in fly) that we discussed above,
nor the interactions FOXO1 → PDK1, IRS → PTEN and
PTEN → IR (in fly), nor the interactions that are present
only in human.
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If there are many paralogs it is very useful to use abstrac-
tion, by collapsing the paralogs, reducing the number of
displayed nodes and edges. The information for finding
the core network will nevertheless not be missing in this
abstract view, see Figure 5. In particular, the edges from
PI3K to IRS can be seen much easier in Figure 5 than in
Figure 2.

Researchers interested in one of the traditional layout set-
tings such as a "side by side" layout, can obtain one by a
mouse click, see Figure 6. In this setting one can easily see
that there are many edges missing in the network of the
chimpanzee (green). However, it is hard to recognize
which edges do exist in most of the networks and there-
fore might belong to the core of the alignment. Moreover,

it is hard to recognize the novel interactions discussed
above.

The example shown up to now is rather small, five net-
works with around ten proteins each, altogether around
60 proteins. But VANLO is able to handle larger network
alignments with hundreds of proteins too. An example
dataset with three networks and a total of nearly 800 pro-
teins can be navigated interactively and a layout with our
simulated annealing algorithm was computed within less
than 30 seconds, see Figure 7. Another visualization chal-
lenge is a sparse alignment, with a small overlap between
the different species, see Figure 8. The collapsed graph of
an alignment (see Section 2.1.3) does not depend on the
number of networks in which there are orthologous pro-

The Insulin/IGF1 Pathway alignment of human (pink) and chimpanzee (red)Figure 3
The Insulin/IGF1 Pathway alignment of human (pink) and chimpanzee (red). The other networks are filtered out. 
For a better overview only the human network is labeled.
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teins and therefore the layout computation for sparse
graphs is as efficient as the one for dense graphs.

In conclusion, our tool can be used for the detailed
inspection of the similarities and differences of alignable
interaction networks, as we did for two (human and
mouse, Figure 4) and five networks (Figure 2). In turn, a
bird's eye view of the latter alignment provided by our
tool yielded some quick insights into regions where para-
logs are abundant, and regions where some subnetworks
are not represented. Interaction mechanisms supported
the analysis tasks by filtering the required information
and facilitating an interactive display of the parts to be
investigated.

4 Conclusion
The visualization system for aligned biological networks
(VANLO) we presented, enables the user to answer some
key questions concerning network alignments. It also pro-
vides several interaction techniques allowing the user to
visually explore aligned networks. Additionally, a new lay-
out approach using 2.5D is presented. This approach ful-
fills all requirements for a layout of alignments. The
layout turns out to be helpful to understand the structure
of a network alignment. Also, traditional representations
are supported. Thus the visualization system is a very use-
ful tool for biologists to explore alignments, to find out
details and to render results.

The Insulin/IGF1 pathway alignment of the network for human (pink) and mouse (orange) onlyFigure 4
The Insulin/IGF1 pathway alignment of the network for human (pink) and mouse (orange) only. The same layout 
and settings as in Figure 2 are used but the other three species are filtered out. Both networks are rather similar, the few dif-
ferences (e.g. missing interaction between SIRT and FOXO1 in mouse) are easily recognizable.
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With respect to limitations of the software and future
work, it would be useful to automatically include proper-
ties of the proteins and to automatically map them to
shape or color attributes. This would help the user to eas-
ily predict properties of proteins, where they are not
known. Regarding the edges, it would be useful to allow
different edge/arrow shapes, for example, to denote regu-
lation of a protein (gene product) by another protein
(transcription factor). Moreover, for very large networks
in particular (more than several hundred nodes), we are
developing ways to transform/simplify these before ren-
dering them, based for example on the ideas of Royer et

al. [52]. Finally, a visualization of the entire evolutionary
history of an aligned set of networks, starting from a small
ancestral network, is on our agenda.

5 Availability and requirements
The software project presented in this manuscript is called
VANLO (Visualization of Aligned Networks with Layout
Optimization) and is available on http://www.math-
inf.uni-greifswald.de/VANLO. The presented software is
implemented in C++, where the included graphs are
implemented using the boost graph library and for the
graphical user interface QT was used. The simulated

A network alignment where all paralogous nodes have been collapsedFigure 5
A network alignment where all paralogous nodes have been collapsed. The alignment features the Insulin/IGF1 Path-
way as in Figure 2, with the same layout. Fewer interactions and fewer proteins are shown, yielding a better overview of the 
overall structure.
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The Insulin/IGF1 pathway alignment of the network for all five species, human (pink), chimpanzee (red), mouse (orange), rat (yellow), and fly (gray) in a "side by side" settingFigure 6
The Insulin/IGF1 pathway alignment of the network for all five species, human (pink), chimpanzee (red), 
mouse (orange), rat (yellow), and fly (gray) in a "side by side" setting. The same layout as in Figure 2 is used.

A large alignment with more than 200 proteins per species and nearly 800 nodes overallFigure 7
A large alignment with more than 200 proteins per species and nearly 800 nodes overall. The layout for this align-
ment is computed by our simulated annealing algorithm in less than 30 seconds.
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annealing layout algorithm is an own implementation
and the other layout algorithms are, sometimes modified,
the ones provided by the boost graph library. This first
publication of the software is only for the use with Win-
dows XP but it will later on be published in a platform
independent version. A manual for the software, includ-
ing a file format description for the alignment data, and
an explanation of the usage is given in Additional file 2.
The work is currently published under the lesser gnu pub-
lic license (LGPL), which allows every user to freely use
the software.

6 Authors' contributions
SB did the implementation work and together with LL
accomplished the theoretical work on the visualization
ideas. GF developed the visualization scenario together
with the interpretation and initiated this project. All three
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A sparse network alignment for three speciesFigure 8
A sparse network alignment for three species. In the part on the left, most of the blue network is missing and in the part 
on the right, most of the green network is missing.
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visualization but include certain topics in computer
graphics and geometric modeling.
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species is explained. Due to their evolution from a common ancestor, PPI 
networks can be aligned. How an alignment is defined, is also explained 
in this supplement. Furthermore the reader finds a detailed explanation 
on orthologous and paralogous proteins.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Manual. The file manual.pdf includes a manual for the use of the 
VANLO software and a file format specification for the input files used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-327-S2.PDF]
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