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Abstract. The analysis of the ever-increasing amount of biological and biomedical data can 

be pushed forward by comparing the data within and among species. For example, an 

integrative analysis of data from the genome sequencing projects for various species traces 

the evolution of the genomes and identifies conserved and innovative parts. Here I review 

the foundations and advantages of this “historical” approach and evaluate recent attempts at 20 

automating such analyses. Biological data is comparable if a common origin exists 

(homology), as is the case for members of a gene family originating via duplication of an 

ancestral gene. If the family has relatives in other species, we can assume that the ancestral 

gene was present in the ancestral species from which all the other species evolved. In 

particular, describing the relationships among the duplicated biological sequences found in 25 

the various species is often possible by a phylogeny, which is more informative than 

homology statements. Detecting and elaborating on common origins may answer how 

certain biological sequences developed, and predict what sequences are in a particular 

species and what their function is. Such knowledge transfer from sequences in one species 

to the homologous sequences of the other is based on the principle of ‘my closest relative 30 

looks and behaves like I do’, often referred to as ‘guilt by association’. To enable knowledge 

transfer on a large scale, several automated ‘phylogenomics pipelines’ have been 

developed in recent years, and seven of these will be described and compared. Overall, the 
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examples in this review demonstrate that homology and phylogeny analyses, done on a 

large (and automated) scale, can give insights into function in biology and biomedicine.  35 

 

Keywords: homology search, comparative genomics, protein function, annotation 

pipelines, phylogenomics 

 

Introduction and terminology. Homology is the relation of biological sequences by way of 40 

their common evolutionary origin (Fitch 1970). That is, there once was a piece of DNA, a 

gene, an interaction between proteins, etc. It was duplicated, and the duplicates evolved 

separately, gaining, for example, substitutions in sequence. The duplicates are called 

homologs, no matter how similar they are. Nevertheless, since usually we cannot look back 

in time, homology is an inference based on similarity. It is a pragmatic yes/no decision that 45 

can have an estimate of significance, or probability, attached to it. This estimate is usually 

based on the quantity of similarity. Thus, two genes can be said to have a high chance of 

being homologous, or, some part of the sequence of one gene can be homologous to 

another gene. However, two genes should not be called “highly homologous”. Terminology 

does not allow such a statement; sequences have a common origin, or they do not have 50 

one. More importantly, though, it must be recognized that homology is always something we 

know with limited certainty: Certainty cannot be established since the similarity that we can 

measure may be due to convergence, where two sequences of different origin become 

similar because they fulfill a common function. Or, similarity due to common ancestry may 

get lost in time and no longer be recognizable. Thus, with a few exceptions (using fossil data 55 

or evolution in the lab), homology is a concept that must be handled with pragmatism: We 

cannot be certain about homology, but estimates of homology can nevertheless be used as 

a foundation of meaningful analyses and valuable predictions, even if the term is misused by 

many, and the fundamental uncertainty of homology statements is neglected all too often.  
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The transfer of knowledge about inherited attributes from one homologous sequence to 60 

another is at the heart of comparative genomics and phylogenomics, and it will be 

exemplified in detail below. We will mostly deal with “function” or “functionality”. Defining 

these concepts precisely is difficult; neither the section “Definition of function” in Watson et 

al (2005) nor the section “What is function?” in Friedberg (2006) provide a clear-cut 

definition. A working definition sufficient for our purpose is that function is either a term taken 65 

from a controlled vocabulary of biological terms such as the Enzyme Commission (EC, 

www.hem.qmul.ac.uk/iubmb/enzyme/) classification scheme or the Gene Ontology 

Consortium (GO) scheme (2006, www.geneontology.org), or a term which is not yet part of 

such a controlled vocabulary, but which can be added to it by specializing an existing term. 

We mentioned “duplicates” of a biological sequence; but we have to distinguish between two 70 

scenarios: 

1) The standard duplication of a sequence within a single species, e.g. the appearance of 

two copies of a gene and their subsequent divergence. Whole-genome duplication, 

segmental duplication, tandem duplication, retrotransposition, and other processes may 

cause such a duplication.  75 

2) The other common mechanism that brings two copies into existence is speciation, that 

is the “duplication” of the entire species hosting the gene. Glossing over the speciation 

process itself (which involves individuals in a population, giving rise to a wide array of 

complicating factors, see e.g. Maddison and Knowles, 2006), the result is that the gene 

is found (and usually continues to be found) in the two species, and in their subsequent 80 

descendants, and it diverges in these.  

Standard duplication gives rise to paralogs, speciation gives rise to orthologs (Fitch 1970), 

and a history of duplication and speciation events gives rise to bewildering scenarios. 

Unfortunately, in this case confusion is all too often heightened by a misuse of terminology 

which suggests a certainty that does not exist: Two most similar genes found in two species 85 

are often called orthologs without any further justification. Even if they are each other’s 
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reciprocal closest relatives, they need not be orthologs. They may be two paralogs for which 

the “opposite number” in the other organism does not exist due to differential loss (Fig. _1), 

a phenomenon called “hidden paralogy” (Martin and Burg, 2002). Here, muddled 

terminology and an unwillingness to face uncertainty triggers, for example, the problem that 90 

the “orthologs” found by methods like Inparanoid (Remm et al, 2001), Orthostrapper (Storm 

and Sonnhammer, 2002) or OrthoMCL (Li et al, 2003) cannot be used to construct species 

phylogenies on the assumption of single common origin (see e.g. Theissen 2002). As 

described by Zmasek and Eddy (2002, their Fig.1), hidden paralogy can impair functional 

annotation, too: the duplication that is ignored may go together with a change in function.  95 

A detailed discussion of terminology problems with respect to orthology and paralogy, and 

their interconnection with functional issues, can be found in Jensen (2001) and references 

therein. 

The following text describes the path of the evolutionary analysis of gene/protein families, 

starting with homology search and alignment, followed by tree inference, and culminating in 100 

functional annotation. The paradigm of phylogenomics, which is the superiority of annotation 

based on trees over annotation based on homology search, is exemplified, and automated 

phylogenomics pipelines are described and compared in a tabular format. 

 

Homology Search. Homology searches are at the heart of gene/protein family analysis, 105 

because they deliver the data to work with. The searches provide the evolutionary relatives 

of the gene/protein under study. As described above, any homology search can at most find 

putative homologs of a gene/protein in a set or a database of other genes/proteins. Thus, all 

occurrences of the term “homolog” in the following may be read as “putative homolog”. 

Using sequence data, similarity is used as a proxy to homology. Then, homology search 110 

becomes a string-matching exercise, where matching of similar characters (one from each 

string) is measured using a scoring matrix that relates the individual characters. Positional 

homology can be established by an alignment process introducing gaps so that overall, the 
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matching characters trigger a maximum sum-of-pairs similarity score (for a tutorial see 

Fuellen 1994).  115 

Using more than one member of a gene/protein family as search input, homology search 

gains sophistication, finding matches that are closest in similarity to a set of strings. The 

corresponding methods used to search for protein homologs can be divided into profile-

based approaches such as HMMSearch (Eddy 1998) and PSI-Blast (Altschul et al, 1997) 

and motif-based approaches such as PHI-Blast (Zhang et al, 1998) and MAST (Bailey and 120 

Gribskov, 1998). In Alam et al (2004) we added another class that is the combination of 

existing methods. After struggling with complicated approaches and formulas, we finally 

adhered to the rule of keeping the approach as simple as possible, combining methods 

using a simple formula. We were then able to outperform current methods by a good 

margin. More precisely, our CHASE method combines the ranked lists (Fig. _2) of hits 125 

(putative homologs) calculated by the component methods. For each hit, CHASE takes the 

weighted average of its significance values (to be precise, its E-Values) in each ranking. The 

new ranking of hits then follows from the weighted average obtained by the hits using the 

component methods. Two preprocessing steps were necessary, however, for successful 

combination: The significance values associated with a hit sequence from the database 130 

were found to be on a different scale depending on the method that produced the hit list, so 

they had to be rescaled to render them comparable. Second, the logarithm of the 

significance values was taken to avoid rounding problems. (A very similar approach to the 

integration of systems biology data, using P-values, and involving weighting, transformation 

and scaling, is described in Hwang et al, 2005.) 135 

 

Validation of sequence-based protein homology search methods is tricky since a standard of 

truth cannot be obtained directly – there is no way to look back in time. As a proxy, 

relationships between proteins based on structural data such as SCOP (Murzin et al, 1995) 

can be taken (Rehmsmeier 2002). Thus, we evaluated in how far our method finds 140 

structure-based homologs of a protein family using sequence data of a set of related 
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proteins from the same family (or superfamily). Indeed we outperformed the component 

methods; in particular we were able to identify more true positives within the hits at the top 

of the list, as can be seen from the specificity/sensitivity plot (also known as ROC, receiver-

operator-characteristic) of Fig. _3.  145 

 

CHASE was developed in 2002/2003. It is possible that methods of homology search we did 

not consider (Spang et al, 2002; Ploetz and Fink, 2005; Kuang et al, 2005) will outperform 

the specificity / sensitivity we obtained. However, if these methods were incorporated into 

our scheme, we are confident that the new combination scheme will again be superior to 150 

each of its components, thus making it a timeless approach. An important question, which is 

only answered by anecdotes in the CHASE paper, is, “why does combination work”. 

Basically, each method has its outliers, and combination suppresses these (cf. Fig. 5 in 

Alam et al, 2004). However, a rigorous analysis still needs to be conducted to provide more 

insight. Then again, there exist a lot of combination approaches in bioinformatics, for protein 155 

structure prediction (for example, Cuff et al, 1998), protein function prediction not based on 

sequence homology (Kemmeren et al, 2005), transcription start site calculation (Bajic et al, 

2004), gene modeling (Allen et al, 2005) and for data integration in systems biology in 

general (Hwang et al, 2005), but none of these papers seem to provide genuine insight into 

why combination is so successful.  160 

 

Genomic Homology Search. The search for evolutionary relatives of a gene/protein should 

not be limited to protein database searches. Genomic databases containing nucleotide data 

of whole chromosomes or genomes may contain relatives that have not yet made it into the 

protein databases because the nucleotide data has not yet been analyzed, or because the 165 

gene was missed. Here, the piecemeal intron/exon structure of many eukaryotic genes adds 

a complicating factor, and a straightforward analysis of all six-frame translations of a 

genomic sequence is not enough. Instead, using gene modeling approaches we need to 
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predict the intron/exon structures of the genes in the genomic sequence. As we just saw, 

combinative approaches have also been developed for this task. In particular, Jigsaw (Allen 170 

et al, 2005) combines evidence from cDNA, transcript and gene data collected from 

databases and from ab-initio gene finders as well as from gene finders that use a sequence-

conservation approach, and from phylogenetic analysis. The EnsEMBL pipeline can also be 

thought of as a combinative approach, see Curwen et al, 2004. Finally, FIGENIX (Gouret et 

al, 2005) also includes a combinative approach to genomic searches, before starting the 175 

phylogenomics pipeline that we discuss in more detail below. (See also Electronic 

Supplementary Material S1 for Genomic Homology Search - a method combination 

approach.) 

 

Phylogenetic tree inference.  A gene tree is calculated given the gene sequences as input, 180 

aligned for positional homology. The tree-shaped arrangement is then based on the 

similarity between the aligned sequences, evaluated position by position of the alignment. 

Some clever algorithms like maximum parsimony, Bayesian inference, maximum likelihood 

and neighbor joining (Felsenstein 2003) have been developed to calculate the tree by which 

the similarity / inheritance relationships among the sequences are best reflected. Most of 185 

them work for both nucleotide and amino acid sequences. Excellent reviews and textbooks 

exist on these topics (Thornton and DeSalle 2000, Felsenstein 2003). For very large 

amounts of sequence data, only distance-based methods such as neighbor-joining are fast 

enough to deliver a tree in reasonable time (see Mailund et al 2006 for a fast 

implementation). However, distance-based methods fail to fully consider the column-wise 190 

pattern of similarity provided by the positional homology of the sequence alignment. Instead, 

they perform pairwise sequence comparisons to calculate pairwise distances and only then 

they move on towards a multi-species analysis. In contrast, parsimony, likelihood and 

Bayesian approaches are time-consuming because they take each column of the multiple 

alignment into consideration, and, in turn, they very often they yield more plausible trees. 195 

Parallelized and speed-optimized versions of the Bayesian approach (MrBayes, Ronquist 
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and Huelsenbeck, 2003, Altekar at al, 2004) and of maximum likelihood (RaXML, 

Stamatakis 2006) are the best option if accurate trees are to be estimated from large 

amounts of data (e.g. up to several thousand average-length protein sequences). In any 

case, a tree contains more useful information than a tabular listing of gene sequence 200 

similarity. There are also methods that can calculate a network, instead of a tree, allowing 

for the representation of recombination events, gene conversion, horizontal gene transfer, 

hybridization, and/or simple uncertainty (Bandelt and Dress 1994, Bryant and Moulton 2004, 

Huson and Bryant 2006). 

 205 

A combined gene/species tree is depicted in Fig. _4. (A similar evolutionary scenario was 

already used in Fig. _1 to describe “hidden paralogy”). Following the tree from the root to the 

leaves, a specific scenario of gene evolution by duplication and speciation can be read off 

the tree. At the root a duplication took place, and the red and the orange copy of the gene 

evolved without further duplication or loss; both genes went through the speciation events 210 

as indicated. Based on the red or the orange copy alone, the correct species tree can be 

inferred; all orthologs are present and there is no hidden paralogy: If sequences were lost as 

in Figure _1, a tree based on closeness of relationship would place together paralogs, in 

that case resulting in an incorrect species tree. If only a few sequences were lost, we can 

take note of the problem, and return that species tree that is concordant with the gene tree 215 

assuming a minimum of gene duplication and loss (Page 1998, Chen at al, 2000). To 

achieve this goal, we can use parsimony as an optimization criterion to find the species tree 

with which the given gene tree reconciles best. Such a reconciled gene tree illustrates all 

putative speciations, duplications and losses, and we can infer all orthology and paralogy 

relationships between genes. Since the history of duplications and speciations of a gene 220 

may be quite complex, rooting of gene trees is not straightforward; some ideas are 

presented in Chen et al (2000) and Stechmann and Cavalier-Smith (2002).  
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Knowledge transfer based on comparative genomics: Function prediction using 

phylogenies of GPCR and NR proteins. The following examples of the use of phylogenetic 225 

trees for the functional characterization of protein sequences illustrate some of the most 

important issues encountered in phylogenomics; cases of success are described as well as 

problems such as missing conservation, and convergence. An early paper by Fryxell (1996) 

reports success in correlating phylogenetic tree structure and functional annotation for 

paralogous G protein α  chains, suggesting that “each pharmacological class of G α  genes 230 

share a single, ancient evolutionary origin", and convergence can be ruled out (Fryxell 1996). 

Later, G-protein-coupled receptors (GPCRs) have been studied intensively. Communi et al 

(2001) identify a novel GPCR, and their phylogenetic tree of paralogous GPCRs (figure 2 in 

their paper) shows that a protein of high affinity to ADP is its closest relative. Indeed, their 

experimental work confirms high ADP affinity of their novel GPCR. Joost and Methner (2002) 235 

suggest that their phylogenetic analysis of 277 human G- protein-coupled receptors is a “tool 

for the prediction of orphan receptor ligands”. For example, their tree gives a valuable hint 

regarding the function of the GPR12 protein (Ignatov et al, 2003). Furthermore, Metpally and 

Sowdhamini (2005) describe a very exhaustive study of GPCRs, noting “unexpected levels of 

evolutionary conservation across human and Drosophila GPCRs”. Many papers have been 240 

published studying the evolution of single amino acids (or small sets of amino acids) with 

respect to function (see Yao et al, 2003; Thornton and Kelley, 1998, for examples.)  

 

Guilt by association (that is, phylogenetic closeness) does not always work. For example, 

Escriva et al (1997) study NRs (nuclear receptors; orthologs as well as paralogs) and they 245 

report that they found “no relationship between the position of a given liganded receptor in 

the tree and the chemical nature of its ligand”. They propose that the various nuclear 

receptors “have gained the ability to bind their ligands independently and that the ancestral 

NR was an orphan receptor”. However, homodimerization versus heterodimerization 

correlates with the different groups in the NR tree: Laudet (1997) proposes that the ability to 250 

heterodimerize evolved once, in a gene tree of orthologs and paralogs. Convergence is a 
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frequent explanation for failure of knowledge transfer based on phylogeny. For example, 

Kornegay et al (1994) describe a case of species-specific convergence for stomach 

lysozymes. 

 255 

The question whether orthologs or (closest) paralogs are better suited for function prediction 

is debated, see below and Jensen (2001). 

 

 

Homology search versus phylogenetic tree inference for functional annotation. 260 

Homology search can be used for functional annotation in two ways: The sequences found to 

be related can be used to predict attributes of the sequence(s) used for the search, and vice 

versa. For example, an uncharacterized sequence can be used as search input, and the hits 

give hints regarding functionality, if something is known about these. In turn, all proteins 

known to be encoded by a given genome can be put into a database, and homology 265 

searches with known proteins can be used to annotate this protein database. Such a 

knowledge transfer is done implicitly if data from KOG (eukaryotic clusters of orthologous 

groups / eukaryotic COG, Tatusov et al, 2003) or Pfam (Sonnhammer et al, 1998) are used 

for annotation of a new genome.  

 270 

Just performing database searches, accuracy of functional annotation can be compromised, 

as discussed in Brown and Sjölander (2006) (earlier papers are Koski and Golding (2001), 

Devos and Valencia (2002), Galperin and Koonin (1998), Eisen (1998) and Eisen and Wu 

(2002)). In particular, the relationships between search input and hits, and the subsequent 

knowledge transfer, are devoid of the structure that is inherent to biological data, namely the 275 

tree-shaped or network-shaped relationship due to common evolutionary history.  And 

indeed, it was shown that it is worth employing the fine-grained tree structure for homology 

search itself (Rehmsmeier and Vingron, 2001), and for the annotation or functional 

characterization of sequences. In particular, rate variation (possibly combined with 
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duplication and hidden paralogy) can trigger incorrect functional annotation by homology 280 

search alone (Eisen, 1998; but see Zmasek and Eddy, 2002, page 17). Of course, rate 

variation can also yield incorrect phylogenetic trees (see e.g. Philippe et al (2005) who 

discussed this issue quite recently). This effect is pronounced if fast distance-based tree 

inference methods are employed, because distances may be inflated by substitutions that 

occur exclusively in one sequence (so-called autapomorphies), or distances may be reduced 285 

artificially between the sequences that evolved slowly, triggered by the leftover unsubstituted 

character sites (so-called symplesiomorphies) which they share (Thornton and DeSalle 2000; 

Fuellen et al, 2001).  

 

Automated pipelines for homology search, phylogenetic tree inference and functional 290 

annotation. As described, one major reason to do phylogenomics is the quest for more accurate 

functional annotations (Eisen 1998, Eisen and Wu, 2002). Naturally, phylogenomics is done on a large 

scale: we wish to annotate not just a single protein family, and we want to include as much data as 

possible to maximize accuracy of the analysis. A larger dataset not only improves chances that some 

sequences are annotated based on experiment. We can also assume that the more homologous 295 

sequences are included, the better the tree structure (Rannala et al, 1998). Large-scale analysis calls 

for automation, exemplified by the seven pipelines compared in Table _2. Automation started with the 

pyphy tool by Sicheritz-Ponten and Andersson (2001). They introduced crude tree structure schemata 

called „phylogenetic connections”. Using these, for each gene in a genome the user of pyphy can then 

determine e.g. whether it features nearest neighbors only from the archaeal kingdom. Around the 300 

same time, Zmasek and Eddy (2002) developed RIO, Resampled Inference of Orthologs, with an 

emphasis on the estimation of orthology and paralogy given complex gene histories, including 

confidence values of the estimates. RIO is tightly connected to the Pfam database, restricting input 

options. Its output consists of lists of orthologs and paralogs; no phylogenetic tree is provided. 

Plewniak et al (2003) calculate no phylogenetic tree either, but they do provide a clustering of the 305 

sequences found to be related to the query. Their PipeAlign tool already automates retrieval of related 

sequences from databases, as well as the generation and curation of the multiple alignment.  Frickey 

and Lupas (2004) describe an automated “phylome generation and analysis” tool called PhyloGenie 

that is inspired by pyphy and includes improvements on the generation and the post-processing of the 
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multiple alignments. These are not based on the full sequences; instead, the homologous regions are 310 

written underneath the query sequence, an approach called “stacking of high-scoring segment pairs 

(HSPs)”. Moreover, they maintain a database of the gene trees constructed and enable extraction of 

all phylogenies that match specific constraints on tree structure. Gouret et al. (2005) report an 

“intelligent automation of genomic annotation” called FIGENIX, which calculates gene trees, guided by 

an expert system. For each protein family, three different phylogeny reconstruction methods (neighbor 315 

joining, maximum parsimony, maximum likelihood) are used, and a consensus is calculated. 

ProteinUniverse (Brown and Sjolander 2006; Krishnamurthy et al, 2007) provides a suite of tools that 

taken together implement a phylogenomics pipeline. Special care is taken to deal with domain 

organization issues. Input options are very flexible, and a sophisticated functional analysis can be 

performed towards the end of the pipeline. Most recently, tree construction based on homology search 320 

output has been added to BLAST itself (Wheeler et al, 2007), by stacking of HSPs to provide the 

multiple alignment. Only two distance-based tree reconstruction methods are available (neighbor 

joining and a variant of minimum evolution, Fitch and Farris (1974)), and no confidence estimates 

(bootstrap values) are calculated.  To a varying degree, all these pipelines attempt to automate four 

tasks: Collect useful sequence information, align it, generate a tree or a set of trees, and analyze the 325 

evolutionary information in some manner motivated by the biological question that was the starting 

point. In the next section, we will use the RiPE pipeline to exemplify these tasks, sometimes with 

reference to one of the other pipelines just described. 

 

 330 

The RiPE pipeline for automated phylogenetic analysis. We designed a pipeline (Fuellen 

et al, 2005; Spitzer 2006) called Retrieval-induced phylogeny estimation (RiPE). RiPE 

automates phylogenomic analyses, in order to annotate a protein family as accurately as 

possible using as much information as possible, as summarized in Fig. _5. Collecting this 

information is task 1, so we conduct a homology search with a search profile (derived from 335 

the protein family) as query. Ideally, the query corresponds to what we call a “maximum unit 

of common evolutionary heritage”, that is a repeat-free concatenation of domains, which 

evolved together in the members of a protein family (Spitzer 2006, chapter 3). Optimally, we 

use a combination of homology searches as in CHASE, in as large a dataset as reasonable. 
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In the study reported in Fuellen et al (2005) we restricted ourselves to proteins known from 340 

completely sequenced genomes, and we used PSI-Blast (Altschul et al, 1997) for searching. 

The former restriction made it a bit easier to analyze results. We obtained a tree of 1138 

sequences; a preliminary analysis using the NR database (restricted in size only by setting 

the number of bacteria and archaea to a representative subset) yielded an unmanageable 

tree of more than 4000 sequences. Moreover, searching in the proteomes of completely 345 

sequenced genomes, the analysis should not be impaired by missing (yet unsequenced) 

paralogs. PSI-Blast was used because CHASE was still in development. 

 

 

We stack the homology search results (high-scoring segment pairs, HSPs) in the form of 350 

blockwise local pairwise alignments between the profile (the already aligned set of query 

sequences) and the homologous sequences from the database (cf. Figure _5). Thus, only 

the homologous parts of the homologous database sequences are retained, and the position-

by-position homology as defined by the alignment is the result of the homology search itself.  

Thus, task 2 is accomplished, namely the multiple alignment of the sequences, here defined 355 

by the positional homology assumed for each position in the alignment. Our approach 

focuses on the more reliable (less noisy) regions of the alignment, as suggested in Eisen 

(1998) and Sjölander (2003), and it is an alternative to alignment masking (Frickey and 

Lupas, 2004) that is the exclusion of alignment positions deemed unreliable in a post-

processing step. As explained by Sjölander, such masking has the downside that functionally 360 

important regions outside of the conserved core may be neglected; this downside is avoided 

by our approach. Moreover, stacking is much faster than any true multiple alignment, so that 

we can analyze much larger data sets. 

 

Task 3 is the phylogenetic tree reconstruction; we do not do anything special here, using 365 

standard software like neighbor joining to establish a tree-shaped fine-grained relationship 

among the homologous sequences. Despite their shortcomings already discussed, using fast 
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distance-based methods (such as neighbor-joining using Quickjoin, Mailund et al, 2006), 

makes it possible, even for very large datasets, to calculate confidence values for subtrees 

based on bootstrap re-sampling. Then again, for the neighbor-joining tree of the 1138 370 

sequences we analyzed, we find subtree support of 0% for branches close to the root of the 

tree. This is to be expected (Thornton and DeSalle, 2000); the phenomenon is caused by 

sequences that “wander around” in the tree because they do not really belong to any of the 

subtrees that branch off close to the root (see also Thornton and DeSalle 2000, page 54). 

Nevertheless, the tree features large subtrees that correspond to the ABC subfamilies known 375 

from the literature, and it features many smaller subsubtrees with high bootstrap support that 

correspond to known subsubfamilies. The subtrees represent all known subfamilies and they 

contain almost exactly the sequences known to belong to these based on published 

inventories, with only 10 exceptions (out of 264 sequences classified in the literature), and 6 

of these 10 exceptions are most likely an error in the literature (Fuellen et al, 2005, 380 

supplementary data). 

 

Task 4 is the functional analysis of the sequences. For this task, we collected functional 

annotation for all sequences in the tree. This is unfortunately a highly manual task because 

the sources of experimental annotation information are often dispersed. For ABC 385 

transporters, the GO annotation (Gene Ontology Consortium, 2006) is insufficient to assign 

precise substrate specificity (transport capacity). Thus, we obtained precise substrate 

specificities from databases and from the literature. Given a gene tree with annotated and 

unannotated sequences as leaves, we then use the simple idea that knowledge transfer 

should be done from an annotated leaf to every leaf in the tree to which it is the closest 390 

annotated leaf. This idea is a variant of the ‘guilt by association’ principle; in a phylogenetic 

context, this association is common evolutionary history. The function transfer rule as defined 

in Fuellen et al (2005) and illustrated in Fig. _6 is a formalization of this idea. A closely 

related formalization used by the RIO pipeline is the definition of “subtree neighbors” of a 

sequence s (Zmasek and Eddy, 2002), denoting by default all other sequences that originate 395 
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from the grandparent p of s in the tree, no matter whether the path from p to s, and from p to 

the subtree neighbors, features duplication or speciation events. More generally, p may be 

the k-level parent of s, e.g. the great grandparent for k=3. The difference between this 

concept and the function transfer rule lies in the arbitrary threshold employed to define 

subtree neighbors: the level k must be fixed in advance. Zmasek and Eddy suggest function 400 

annotation transfer is best for proteins which are subtree neighbors, and at the same time 

deemed orthologous by their method. Alternatively, they suggest that superorthologs (no 

duplication in the path from the annotated to the unannotated protein) and ultraparalogs (no 

speciation in that path) are good candidates for function annotation transfer. As described, 

RIO provides bootstrap-based significance values for orthology, superorthology and subtree 405 

neighborhood, and report rankings based on orthology. They do not integrate their concepts 

in an automated way, yielding e.g. a combined ranking. A recent Bayesian approach to 

functional inference from gene trees is outlined in Engelhardt et al, 2005. 

 

It has been put forward that orthology should be the single criterion for validity of function 410 

annotation transfer (Eisen, 1998). As described, Zmasek and Eddy (2002) suggest functional 

annotation transfer based on different criteria, and they point out problems if the ortholog is 

not also a subtree neighbor. Moreover, we may add that orthology assignments are often 

based on similarity, and hidden paralogy is possible. Jensen et al (2003) claim superiority of 

using orthologs based on phylogenetic profiling but not sequence homology, for predicting 415 

cellular function. They acknowledge that for 3D protein structures, there is no difference; 

paralogs as well as orthologs are conserved. In any case, closeness in the gene tree is a 

very plausible, if not the most plausible, justification for transferring an annotation (Thornton 

and DeSalle 2000, page 50), even if the presence of paralogs almost always hints at sub- or 

neofunctionization (Prince and Pickett 2002). 420 

 

Our RiPE pipeline automatically performs tasks 1) to 3), and we used it to analyze the 

evolution of ABC proteins, with a focus on their function. As described in Fuellen et al (2005), 
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functional predictions based on phylogeny (summarized in Table _1 and Fig. _7) were 

superior to functional predictions based on a Blast search. Presumably, the tree put the 425 

sequences into a relationship structure that is more accurate than homology search; 

phylogeny reconstruction exploits the complex interplay of the position-by-position similarity 

data given by the alignment of the sequences. As described, our conclusion on the 

superiority of the phylogenetic approach is in line with many other publications. 

 430 

We applied RiPE not just to ABC proteins, but also to FinGER proteins (Stolle et al, 2005), 

DNA-directed RNA polymerases (Klenk et al, 2004) as well as S100 proteins and tyrosine 

kinases (Spitzer, 2006). In particular, in Stolle et al (2005), we calculate a gene tree that 

divides the human FinGER proteins into 6 subfamilies, and we generate a plausible 

prediction of what the FinGER protein under study, FinGER-5 (also known as SMAP-5) may 435 

be doing. Based on its closest characterized relative, the yeast protein Yip1p, it may be part 

of the ER (Endoplasmatic Reticulum) to Golgi transport pathway. In case of Klenk et al 

(2004) our trees confirmed standard phylogenies based on RNA and protein data. 

 

Criteria for comparing phylogenomics pipelines. Following up on Gouret et al (2005), we 440 

collected criteria in Table _2 that highlight different features of phylogenomics pipelines. 

Beyond such a tabular comparison of features, there is no straightforward way to compare or 

benchmark them. The pipelines were designed with different aims, and since we cannot look 

back in time, benchmarking the quality of phylogenetic trees they return is particularly 

difficult. 445 

 

Auxiliary tools for homology search and phylogeny. See Electronic Supplementary 

Material S1 for Auxiliary tools for homology search and phylogeny. 

 

Conclusions. Phylogenetic analysis of whole-genome data across organisms is still in its 450 

infancy. The pipelines currently available all cover just a small portion of an all-encompassing 
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evolutionary (or call it historical) analysis of genes and genomes. They are limited by the 

scope as well as the depth of the analysis. Ultimately, given biological data of all sorts from a 

large range of organisms, one would like to trace back the evolution of all data, how it started 

from a few ancestral precursors by ways of duplication and speciation, giving rise to the 455 

complexity of life that we observe. In other words, a generalization of phylogenetics to all 

levels of biological organization is needed (Serb and Oakley, 2005). For biological pathways, 

such a generalization is difficult but not impossible, given their relatively low level of 

evolutionary coherence (Gabaldón 2005). It is an open question how far back one can trace 

with acceptable certainty, given improvements in methods as well as in data availability, with 460 

a maximum range in species diversity (including fossil data) and data diversity. It is also an 

open question how much of this knowledge can be put to use to cure human disease, or, 

more generally, how much of it is helpful in applied research. 
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Table and Figure Legends. 

 

Table 1. Predictions of ABC protein function by subfamily. 5 

Table 2. Comparison of phylogenetic analysis pipelines. HSP, High-Scoring Segment Pair; 

HMM, Hidden Markov Model.  

Fig. _1. Gene tree with hidden paralogy. A gene duplicated in the ancestor of Malus, Citrus, 

Oryza and Hordeum, yielding a red and an orange copy.  After a period of co-existence, 

differential loss occurred (marked by daggers). The red copy in Malus now has an orange 10 

copy as its reciprocal closest match in Citrus, even though these copies are not orthologs. 

Correct orthology cannot be determined without further information such as a correct 

species tree. Viewing these genes in isolation, it looks like Malus is more closely related to 

Hordeum, and Citrus goes with Oryza. The inadvertent comparison of “apples” (red gene) 

and “oranges” (orange gene) puts the apple tree (Malus) apart from the orange tree (Citrus), 15 

and places one grass each (rice (Oryza) and barley (Hordeum), respectively), next to them 

as their closest relatives. 

Fig. _2. Ranked list of hits that are returned by a homology search method (here: PSI-Blast), 

given an input query and a database to be searched. Alignment scores and E-Values are 

listed on the right. 20 

Fig. _3. Receiver-Operator characteristic plot detailing CHASE accuracy on the detection of 

remote homologs, in comparison to standard methods. The plot displays the coverage 

(percentage of true positives) as a function of the false positives that must be tolerated to 

allow such coverage. The true positives are remote homologs, members of a protein family 

that is from the same superfamily as the query sequences. More precisely, all but one family 25 

of a given superfamily provide the search input, and members of the one family left out must 

be found. Results are averaged over a large test set of protein superfamilies.   

Fig. _4. A gene tree with red and orange edges, embedded into a species tree of plants 

(white). The gene duplicated before the first speciation event, with no further duplications or 

losses.  30 
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Fig. _5. Flowchart of the RiPE pipeline. Starting with the profile of a protein family, a 

database search is conducted and the search results are taken directly to create a multiple 

alignment by stacking. The alignment is then used to infer the phylogenetic tree. (The green 

bars represent the profile and the pink bars the homologous parts of the database hits. Red 

vertical bars symbolize conserved regions). 35 

Fig. _6. The function transfer rule described in Fuellen et al (2005) can be used to annotate 

the human proteins in a protein family under study, using annotation from non-vertebrate 

species. The rule transfers annotation between proteins in sister subtrees. In the simplest 

case, for a human protein H, its sister subtree just features the non-human ortholog N of H. 

In more complex cases, the rule transfers annotation from a larger sister subtree to a 40 

subtree that includes H. The sister subtree may contain uncharacterized paralogs P of the 

protein N from which the annotation is transferred, and it may contain human proteins HO 

that are putative orthologs of N. The subtree that contains H may include other human 

proteins J. Annotation transfer is successful if, nevertheless, function is conserved across 

the thick lines in the gene tree. 45 

Fig. _7. Simplified tree of the ABCB subfamily. Domain arrangements found are the full-

transporter arrangement transmembrane-ABC-transmembrane-ABC and the half-transporter 

arrangement transmembrane-ABC. The balloon labeled “Peptides” refers to human 

ABCB2/B3/B9 and yeast MDL1. The experimental annotation for MDL1 is “peptide 

transport”, and it matches the one for ABCB2/B3, which are also known as “TAP”, 50 

transporter associated with antigen processing. The balloon labeled “Fe / S” refers to human 

ABCB6/B7 and plant/yeast ATM3/ATM1. The experimental annotation for ATM1/ATM3 is 

“involvement in iron/sulfur cluster protein metabolism”, and it matches the one of at least 

human ABCB7. Another correspondence is “Hydrophobic compounds, colchicines”. “Lipids 

?!” is a prediction that awaits confirmation.  55 
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ABC Subfamily 
 

 

Correspondence (True 
positive prediction) 
 

 

No correspondence 
(False positive 
prediction) 
 

 

Prediction (no 
validation possible) 
 

A 2 - - 

B 4 1 1 

C 8 2 6 

D 1 - 1 

F 1 - 2 

G 3 - - 

Total: 
 

19 
 

3 
 

10 
 

Examples 
 

ABCB7: Fe/S-Cluster 
protein metabolism  

 
 

ABCC7: channel, 
gluthathione, organic 
anions, bicarbonate 
(known)  vs. amino 
acids (predicted, 
among other 
substrates) 

 
 

ABCC10: 
glutathione-
conjugates 
 

Table 1 
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Criterion 
 

 

NCBI 
treeview 
(Wheeler 
et al, 
2007) 

 

RiPE (Fuellen 
et al, 2005)  
 

 

FIGENIX 
(Gouret et al, 
2005) 
 

 

ProteinUniverse 
(Brown and 
Sjolander 2006; 
Krishnamurthy et 
al, 2007 ) 

 

PhyloGenie      
(Frickey and 
Lupas, 2004) 

 

PipeAlign 
(Plewniak et 
al, 2003) 

 

RIO 
(Zmasek 
and Eddy, 
2002) 

Input Single 
sequence 
(PSSM 
[position-
specific 
scoring 
matrix] via 
advanced 
options) 

Single 
sequence or 
aligned set of 
sequences 

Single 
sequence 

Single sequence, 
set of 
sequences, 
general search 
terms (e.g. Gene 
ontology 
phrases) 

Single 
sequence 

Single 
sequence or 
set of 
sequences 

Single 
sequence 
and 
correspon
ding Pfam 
(Bateman 
et al, 
2000) 
alignment 

Choice of 
searchable 
databases 

Any NCBI 
database 

Any set of 
NCBI-
formatted 
protein 
databases 

Any set of 
NCBI-
formatted 
protein 
databases 

NR database, 
organism-
specific  
databases, 
protein-family-
specific 
databases, more  

Any set of 
NCBI-
formatted 
protein 
databases 

Swissprot 
and 
TrEMBL,  
Varsplic  
(spicing 
variants), 
PDB  

Swissprot 
and 
TrEMBL 

Choice of 
organisms 

User-
based 
choice 
available 

User-based 
choice by 
selection of 
database 

User-based 
choice 
available 

User-based 
choice available 

User-based 
choice 
available 

- - 

Filtering of 
sites or 
subsequen-
ces of the 
sequences 

Homo-
logous-
regions-
only data 
(stacked 
HSPs) 

Use of full-
length 
sequences or 
homologous-
regions-only 
data (stacked 
HSPs) 

Elimination of 
sites that do 
not evolve 
neutrally;  
automatic 
detection and 
compaction of 
alignment 
columns with 
too many gaps 

Filtering by 
family- and 
subfamily-
specific conser-
vation using a 
crude gene 
family tree  and 
HMMs (by PSI-
PHY and 
Flowerpower); 
elimination of 
columns with too 
many gaps 

Use of 
homologous-
regions-only 
data corrected 
by multiple 
sequence re-
alignment 

None, but 
re-ranking of 
search 
results 
according to 
presence of 
local 
conservation 
motifs 

- 

Handling of 
query 
sequence 
domain 
organization 

- None; relies 
on user-
defined 
“maximum unit 
of common 
evolutionary 
heritage” that 
is domain- 
repeat-free 

Automatic 
domain 
detection 

- - - Manual 
input of 
Pfam 
domain 

Handling of 
database 
sequence 
domain 
organization 

- Processing of 
HSPs to yield 
reassembled 
sequences 
that match the 
domain 
organization of 
the “maximum 
unit” 

Selection of 
domains / 
repeats with 
congruent 
evolution 
based on an 
expert system 

Low quality of 
global alignment  
and conflicting 
Pfam domain 
organization 
detects domain 
organization 
outliers.  

- - No further 
considerat
ion of 
domain 
issues 

Basis for the 
multiple 
alignment 

Stacking 
of HSPs 

Stacking of 
HSPs by 
Mview (Brown 
et al, 1998); 
optional 
realignment by 
Mafft (Katoh et 
al 2005), or 
Muscle 
(Edgar, 2004) 

ClustalW 
(Thompson et 
al, 1994) 

Clusters of 
globally alignable 
homologs 
(provided by 
Flowerpower) 
realigned with 
Muscle (Edgar, 
2004) 

Stacking of 
HSPs and 
realignment of 
problematic 
regions  

DBClustal 
(Thompson 
et al, 2000), 
using 
anchors 
derived by 
the “Ballast” 
component 
of PipeAlign 

Pfam 
(Bateman 
et al, 
2000) 
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Filtering 
database 
sequences 
for 
inclusion 
in the tree/ 
clustering  

- Elimination 
of sequen-
ces without 
the most 
prominent 
motifs 
possible; 
data can be 
filtered using 
(sub)family 
boundaries 
based on  E-
Value; 
filtering of 
splice 
variants; 
filtering of 
sequences 
with ≥  95% 
similarity 
that belong 
to the same 
species; 
filtering of 
fragments  

Elimination of 
sequences 
with divergent 
amino acid 
composition; 
of doubles 
(with 
threshold 
parameter); 
of sequences 
reducing 
alignment 
quality; of 
sequences 
with unusual 
length.   

None; all filtering 
done before tree 
reconstruction 

Elimination 
of 
sequences 
with above-
threshold  
similarity 
(that belong 
either to the 
same 
strain, 
species or 
genus) 

Elimination 
of 
sequences 
without local 
conserva-
tion motifs, 
or without 
the core 
blocks of 
the multiple 
alignment 

- 

Choice of 
phylogeny 
reconstruc
tion 
method 

Only 
neighbor 
Joining 
and 
Minimum 
Evolution 
are 
available 

Manual 
choice of 
method is 
possible 

Choice of 3 
methods and 
projection on 
consensus 
tree 

Choice of 4 
methods; 
additionally a 
SATCHMO (Edgar 
and Sjölander 
2003) analysis is 
possible 

Only 
neighbor 
joining is 
available 

No phylo-
geny, but 
choice of 
two 
clustering 
methods, 
one of 
which uses 
neighbor 
joining  

- 

Tree 
recon-
ciliation 

- - Automatic 
detection of 
speciation/ 
duplication / 
orthology / 
paralogy 

- Automatic 
detection of 
speciation/ 
duplication / 
orthology / 
paralogy 

- - 

Functional 
annotation 

Links to 
NCBI 
protein 
database  
incl. 
annotation 

- Automatic 
extraction of 
functional 
annotation 
using a multi-
agent system 

Detection of 
enrichment in GO 
(Gene Ontology) 
and EC (Enzyme 
Class) annotation;  
Pfam domain 
annotation; input 
from experts and 
text mining tools  

- - - 

Table 2 60 
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Figure 1. 
 

Figure 2. 65 
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Figure 3. 

Figure 4. 
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Figure 5. 

Figure 6.
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Electronic Supplementary Material S1 
Genomic Homology Search - a method combination approach, Knowledge transfer based on 
comparative genomics: Genomic Homology Search for mouse S100A12 and Auxiliary tools 
for homology search and phylogeny. 80 
 

Genomic Homology Search - a method combination approach. Using the CHASE idea, 
we started working on a scheme called GenCHASE that combines genomic homology 
search methods such as TPSI-BlastN (Altschul et al, 1997) and TFASTY (Pearson et al, 
1997), striving for better input data for gene modeling, i.e. more precise data on the regions 85 
that, if translated, feature similarity, in part, to known protein sequence and that may 
therefore be part of the exons of homologous genes. Indeed, GenCHASE combined with 
gene modeling software such as GeneWise (Birney et al, 2004) and GenScan (Burge and 
Karlin, 1997) was able to detect a novel human ABC transporter that was subsequently 
shown to be expressed (see Alam, 2005), and it delivered a promising yet ambiguous 90 
candidate for the DAHP gene in the malaria agent Plasmodium falciparium. The DAHP gene 
is important because it is part of the Shikimate pathway that does not exist in vertebrates. 
Therefore, inhibiting this protein may harm Plasmodium, but neither human nor other 
vertebrates. GenCHASE is currently described best in the PhD thesis of Alam (2005). A 
genomic homology search for the mouse S100A12 protein (Fuellen et al, 2003, 2004) is 95 
described in the next section. Here, genome browser websites were used to do the 
searches. GenCHASE searches later on did not reveal anything new. 

Knowledge transfer based on comparative genomics: Genomic Homology Search for 
mouse S100A12. The study of model organisms such as mouse gives us important 
information that can be compared to information gained from studies involving human. 100 
Furthermore, predictions for human can be made using mouse as a model. More generally, 
computational comparative analyses can relate genomic, expression and other data for 
many species, and knowledge can be transferred. In our case study on ABC protein function 
prediction (described in the main text), we confirmed the hypothesis that such transfer is 
more successful using a phylogenetic tree instead of simple homology searches. 105 
Computational predictions are often the only information available if studies in humans are 
impossible. However, there are many reasons for caution regarding any knowledge transfer 
from animal to human, and it would be preferable to have confidence values of some sort. 
The closer the data to be interpreted and the underlying molecular biology match between 
model organism and human, the higher the confidence that homologous phenomena are 110 
studied, and the better the chance that knowledge transfer is valid.  

For example, some pathways involved in inflammation are highly conserved between mouse 
and human. Both species share the RAGE protein, the Receptor of Advanced Glycation End 
products (Deane et al, 2003). In humans, the S100A12 protein was shown to interact with 
human RAGE, fostering inflammation (Hofmann et al, 1999). In the literature, a homologous 115 
scenario was reported for mouse, proposing that mice are a good model for investigating 
this kind of inflammation (Hofmann et al, 1999; Schmidt et al, 2001). We called this proposal 
into question by performing homology searches in mouse, failing to find a mouse S100A12 
gene in the first place (Fuellen et al, 2003, 2004). Since this work predates the development 
of GenCHASE, we performed the homology searches using standard WWW tools, in 120 
particular homology searches at the Jackson lab (Blake et al, 2003) and gene locus 
investigations using the UCSC genome browser (Kent et al, 2002).  Searching with human 
S100A12, we found a single candidate in mouse that matches closely but only partially; it is 
a sequence covering the first (noncoding) exon and a few hundred nucleotides of intronic 
sequence before and after, with 60% similarity.  The matching TATA box in mouse is non-125 
canonical, and the remaining exons 2 and 3 of the human S100A12 have no match 
whatsoever in mouse, so we can assume that the gene is not functional in mouse. 
Moreover, the partial match in mouse is immediately followed by sequence that matches 
human sequence many kilobases away from the human S100A12 gene, so that we can 
assume that a large segment was deleted in mouse. In fact, since the situation is similar in 130 
rat, all murinae may share the deletion. In this case, knowledge transfer failed: the earlier 
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reports were based on hybridization assays that obviously were not rigorously validated, as 
the hybridizing protein that was supposed to be mouse S100A12 was not sequenced. 

Auxiliary tools for homology search and phylogeny. In the context of the RiPE pipeline, 
we developed a few associated tools that ease various steps, or give additional insight. At 135 
the start of the pipeline, we would like to have a search profile, even though our pipeline 
would also accept a single sequence. The search is based on some or all members of the 
protein family known beforehand, e.g. all human ABC protein sequences. To simplify 
sequence retrieval, we wrote a small web-based tool (Mersch and Fuellen, 2003) that takes a 
table of sequence names and accession codes directly from the PDF (or HTML) of a 140 
publication, and returns the sequences from public databases. The tool, paper2sequences, is 
based on the Bioperl package (Stajich et al, 2002) and it features some heuristics to 
maximize the chances of finding the sequences in question. 
 
In the middle of the pipeline, we face the issue of splice variants, also known as isoforms. 145 
Many genes can be decomposed into two or more exons, between which non-coding introns 
are located. Often, a gene can give rise to different proteins by way of alternative splicing; 
the different protein products differ in their exon composition: some exons may be missing in 
some products, may be shortened, etc. These splice variants can clutter the analysis 
pipeline, slowing it down and expanding the size of the resulting phylogenetic tree. Generally, 150 
they do not add value; there are very few specific functional annotations for splice variants 
(see, however, Searls 2003, Figure 2 for an example). Therefore, we designed and 
implemented a method to filter out splice variants, without access to the genomic sequence, 
since we work with protein databases. Our method, IsoSVM (Spitzer et al, 2006), uses state 
of the art machine learning technology in the form of support vector machines. SVMs are 155 
used to achieve best possible accuracy; we do not want to miss a single member of the 
protein family under investigation just because it is mistakenly classified as a splice variant 
while in fact it is a paralog. 
 
Towards the end of the pipeline, we have to handle very large gene trees, and we wrote a 160 
tool called TreeSimplifier (Lott et al, 2006) to simplify these to some degree, in particular by 
collapsing subtrees where a gene evolved according to species phylogeny without any 
duplication. In other words, all genes in a collapsed subtree are orthologs. Given a species 
tree, we can for example summarize a subtree of ((ABCC10_human, ABCC10_mouse), 
ABCC10_fugu) to a single leaf “ABCC10_vertebrata”. Further, our tool allows blurring the 165 
distinction between closely related species, e.g. summarizing different yeast species by a 
common label. This allows simplifying the gene tree further. Optionally, the tool even allows 
fixing a very limited amount of error in tree topology. Altogether, we were able to simplify an 
ABC protein tree of 1138 leaves to 397 leaves, and a POU transcription factor tree from 185 
to 98 leaves.  170 
 
Our approach to function prediction does not yet consider the domain structure of proteins, 
i.e. the decomposition of the entire sequence into smaller subsequences conserved across 
families (and across species) that may in part be the source of functionality. In case of ABC 
proteins, ignoring domain structure does not seem to cause problems; specific function is 175 
associated with the entire sequence, and the recognition of two domains, an ATP-binding-
cassette and a transmembrane region, causes internal-repeat issues instead. However, a 
step towards a more detailed analysis was taken by developing VisCoSe (Spitzer et al, 
2003), which allows us to visualize domains as well as motifs. More specifically, VisCoSe 
performs a multiple alignment of consensus sequences. These are color-coded by 180 
conservation (based on the underlying alignment). Thus, we can delineate domains that are 
color-coded as conserved subsequences, identifying e.g. the subdomains of the ABC 
cassette (Walker 1, signature sequence, Walker 2). These can then be compared for 
different subtrees, or for different groups of species, and an evolutionary analysis can be 
performed. 185 



  - 33 - 

References 

  
 Alam I (2005) Integrative Approaches to Homology Search, (PhD), University of 
Bielefeld, 2005 
 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) 
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. 
Nucleic Acids Res 25:  3389-3402. 
 Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14:  
988-995. 
 Blake JA, Richardson JE, Bult CJ Kadin JA, Eppig JT; Mouse Genome Database 
Group (2003) MGD: the Mouse Genome Database. Nucleic Acids Res 31:  193-195. 
 Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic 
DNA. J Mol Biol 268:  78-94. 
 Deane R, Du Yan S, Submamaryan RK et al. (2003) RAGE mediates amyloid-beta 
peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:  907-
913. 
 Fuellen G, Foell D, Nacken W, Sorg C, Kerkhoff C. (2003) Absence of S100A12 in 
mouse: implications for RAGE-S100A12 interaction. Trends Immunol 24:  622-624. 
 Fuellen G, Nacken W, Sorg C, Kerkhoff C (2004) Computational searches for missing 
orthologs: the case of S100A12 in mice. OMICS 8:  334-340. 
 Hofmann MA, Drury S, Fu C et al. (1999) RAGE mediates a novel proinflammatory 
axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:  889-901. 
 Lott P, Mundry M, Sassenberg C, Lorkowski S, Fuellen G (2006) Simplifying gene trees 
for easier comprehension. BMC Bioinformatics 7:  231. 
 Kent WJ, Sugnet CW, Furey TS, et al. (2002) The human genome browser at UCSC. 
Genome Res 12:  996-1006. 
 Mersch H, Fuellen G (2003) Paper2sequences: retrieval of sequences listed in a 
publication. Appl Bioinformatics 2:  113-116. 
 Pearson WR, Wood T, Zhang Z, Miller W (1997) Comparison of DNA sequences with 
protein sequences. Genomics 46:  24-36. 
 Schmidt AM, Yan SD, Yan SF, et al. (2001) The multiligand receptor RAGE as a 
progression factor amplifying immune and inflammatory responses. J Clin Invest 108:  949-
955. 
 Searls DB (2003) Pharmacophylogenomics: genes, evolution and drug targets. Nat 
Rev Drug Discov 2:  613-623. 
 Stajich JE, Block D, Boulez K, et al. (2002) The Bioperl toolkit: Perl modules for the life 
sciences. Genome Res 12:  1611-1618. 
 Spitzer M, Lorkowski S, Cullen P,Sczyrba A, Fuellen G (2006) IsoSVM--distinguishing 
isoforms and paralogs on the protein level. BMC Bioinformatics 7:  110. 
 

 
 


