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Pluripotent cells can be subdivided into two distinct states, the naı̈ve and the primed state, the latter being
further advanced on the path of differentiation. There are substantial differences in the regulation of
pluripotency between human and mouse, and in humans only stem cells that resemble the primed state in
mouse are readily available. Reprogramming of human stem cells into a more naı̈ve-like state is an
important research focus. Here, we developed a pipeline to reanalyze transcriptomics data sets that describe
both states, naı̈ve and primed pluripotency, in human and mouse. The pipeline consists of identifying
regulated start-ups/shut-downs in terms of molecular interactions, followed by functional annotation of the
genes involved and aggregation of results across conditions, yielding sets of mechanisms that are
consistently regulated in transitions towards similar states of pluripotency. Our results suggest that one
published protocol for naı̈ve human cells gave rise to human cells that indeed share putative mechanisms
with the prototypical naı̈ve mouse pluripotent cells, such as DNA damage response and histone acetylation.
However, cellular response and differentiation-related mechanisms are similar between the naı̈ve human
state and the primed mouse state, so the naı̈ve human state did not fully reflect the naı̈ve mouse state.

E
mbryonic stem cells (ESCs) were first isolated from mouse embryos some thirty years ago1,2. Since then, they
have been characterized in many other mammalian species, most notably in human3. ESCs are pluripotent,
i.e. they can self-renew and give rise to all cell types of the adult body, which makes them attractive for

therapeutic research. Stem cell research has gained additional momentum with the possibility of reprogramming
somatic cells into induced pluripotent stem cells (iPSCs)4, enabling the generation of patient specific pluripotent
stem cells. As reviewed by De Los Angeles et al. [2012]5, two distinct states of pluripotency are usually distin-
guished. Mouse ESCs (mESCs) are isolated from the inner cell mass (ICM) of mouse preimplantation embryos in
vitro and resemble ICM cells at embryonic day (E) 4.5. These cells have specific properties, for which they have
been termed naı̈ve pluripotent stem cells. Most notably, they are able to generate chimeric animals with high
efficiency when introduced into blastocysts5. Maintenance of mESCs depends on Lif/Jak/Stat3 and Bmp4/
Smad1/5/8. mESCs are also insensitive to single cell dissociation and display dome shape colony morphology.
Furthermore, female mESCs have both of their X chromosomes in an active state (XaXa). On the other hand,
mouse epiblast stem cells (mEpiSCs) are isolated from early post-implantation embryos (E5.5). These cells are
rarely, if at all, able to generate chimeras6 and have one of their X chromosomes inactivated in female lines (XaXi).
Further, mEpiSCs are bFGF and ActivinA-Nodal/Smad2/3 dependent. In contrast to mESCs they are sensitive to
single cell dissociation and display flat colony morphology. Because they represent a more developed state, they
have been termed primed pluripotent stem cells.

Human embryonic stem cells (hESCs) have much more in common with mEpiSCs than with mESCs, although
mESCs and hESCs are derived from the inner cells mass of pre-implantation embryos. This includes growth
factor requirements and X chromosome activation state. Therefore, mEpiSCs and hESCs are thought to represent
the primed state as opposed to the naı̈ve mESCs5,7. Efforts have been devoted to convert primed into naı̈ve
pluripotent stem cells. In mouse, this has been achieved for both permissive and non-permissive strains by Hanna
et al. 20098. In the latter case, however, a more complex experimental protocol was required, yielding metastable
(i.e. transgene-dependent) naı̈ve pluripotent stem cells. In the case of human ESC and iPS cells, conversion into
the naı̈ve state has been attempted9,10. Although the cells that were cultured according to the protocol by ref. 9
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show some features in common with naı̈ve mESCs, such as dome-
shaped colonies, XaXa status, Lif dependence and Activin independ-
ence, these cells disintegrate after 15–20 passages, which is an impair-
ment of the self-renewal aspect of the pluripotent state in vitro. We
were interested in the molecular characterization of these ‘‘naı̈ve-like
human pluripotent stem cells’’ in order to elucidate which barriers
are preventing their full conversion to the naı̈ve state. We analyzed
the transcriptomics data of pluripotent stem cells from different
species and states, such as human versus mouse, and, naı̈ve versus
primed. From a comparative analysis of high-throughput data, for
example of gene expression (transcriptomics) assays, we expected a
deeper understanding of similarities and differences of stem cell
regulation. Usually, differentially expressed genes (DEGs) are iden-
tified for further analysis, and it is assumed that gene expression is a
proxy for the expression of the protein products. Due to noise, such
data often feature false positive as well as false negative findings,
however. Functional interaction networks allow noise reduction by
allowing consideration of interactions between the genes.
Specifically, such network knowledge has successfully been
employed in classification tasks11. There are many different ways
in which genes (and their protein products) can interact, like
dimer/multimer formation, phosphorylation or transcriptional
activation and repression. These types of interactions are reflected
to different extents in transcriptomics data; this has to be taken into
account when interpreting such data in the context of functional
networks. Noise may also be reduced by mapping the genes to func-
tional categories such as Gene Ontology (GO,12) terms or Kyoto
Encyclopedia of Genes and Genomes (KEGG,13) pathways. This
abstraction is successful if general regulatory mechanisms governing
stem cell identity are conserved between different species although
the precise genes that take part in those mechanisms are not.

Many functional interaction networks have been published so far
and they vary greatly in scope and size. Small scale expert networks
with hundreds of genes and interactions, all implicated in pluripo-
tency, have been presented by Müller et al. [2008]14 (employing
machine learning on a large scale network augmented with addi-
tional literature knowledge), Som et al. [2010]15 (with a focus on
careful manual literature curation), Xu et al. [2013]16 (integrating
large scale experimental evidence, complemented by manual cura-
tion) and most recently by Dunn et al. [2014]17 (reconstruction of a
Boolean network of transcription factors based on co-regulation).
Large all-purpose functional interaction networks of tens of thou-
sands of genes, e.g. STRING18 lack the quality that can be provided by
manual curation. Yet, they may be more suitable for the analysis of
high-throughput data. As expert networks invariably cover only a
small amount of the genes that are interrogated in a high-throughput
study, large networks are more amenable to the application of GO/
KEGG abstraction, because, featuring many more genes, they are less
biased with respect to specific terms. The STRING network contains
both direct (physical) and indirect (functional) interactions between
genes.

We recently published ExprEssence [Warsow et al. 2010]19 to
analyse differential data in the context of networks. ExprEssence
computes a LinkScore for every link (interaction) in a functional
network and every pair of conditions described by a high-throughput
data set. The LinkScore reflects the amount of concerted change that
two linked genes or proteins experience during the transition
between two conditions. It takes directionality into account, if such
information is available, considering the expected impact of the
change of the amount of a stimulator or inhibitor on the genes it
regulates. The links with the lowest and highest LinkScores (the tails
of the distribution) are likely to represent the major mechanistic
changes that occur during the transition.

In this paper, we used ExprEssence and an all-purpose functional
interaction network to study the transitions between the naı̈ve and
the primed state of pluripotency in ES and iPS cells from human and

mouse. We obtained the transcriptomics data sets accompanying
Hanna et al. [2009]8 and Hanna et al. [2010]9. For all pairings of
species and pluripotency states, we filtered the major mechanistic
changes based on the links in the tails of the respective LinkScore
distribution, and investigated their GO term and KEGG pathway
enrichment. Finally, we aggregated data of similar transitions.
Thus, our workflow employs links in a network, GO/KEGG enrich-
ment and transition relatedness as three layers of abstraction, which
collaboratively reduce the noise that is inherent to heterogeneous
data. Our results suggest that a published protocol for generation
of naı̈ve human pluripotent stem cells [Hanna et al. 2010]9 gave rise
to human cells that, indeed, share important mechanisms with the
prototypical naı̈ve pluripotent cells from mouse, while their primed
counterparts also show biologically meaningful similarities between
human and mouse. However, we also found mechanisms in the state
claimed to be naı̈ve human, which show similarities to the primed
mouse state. We also investigated a more recent protocol for naı̈ve
human pluripotent stem cells by Gafni et al. [2013]10. Again, we
conclude that although these cells display many similarities to the
naı̈ve mouse cells, they also display differentiation mechanisms
shared with primed mouse cells. These very similarities to the primed
state may be amendable to experimental intervention, in order to
obtain naı̈ve cells as in mouse.

Results
Analyzing cross-condition and cross-species pluripotency-related
gene expression. We set out to describe the transition between the
naı̈ve and the primed state of pluripotent stem cells in two
mammalian species, human and mouse. The comparison is based
on biological mechanisms that we define by the joint analysis of
transcriptomics and network data. A roadmap to our approach is
presented in Figure 1; see Methods for details.

First, we obtained two previously published transcriptomics data
sets8,9. Hanna et al. [2009]8 analyzed the reprogramming of primed
mouse pluripotent stem cells to the naı̈ve pluripotent state. For this
purpose, they generated microarray data describing gene expression
profiles of naı̈ve pluripotent and primed pluripotent stem cells from
the NOD strain, which is generally non-permissive for the naive
state, and the permissive strain 129 (GSE15603). Hanna et al.
[2010]9 studied the reprogramming of human pluripotent stem cells
to naı̈ve pluripotency (GSE21222). Both data sets were downloaded
and processed separately as described in Methods.

Expression profiles from human and mouse stem cells were com-
bined into one data set (see Methods) and we will refer to this and the
analysis based thereon as the Hanna/Hanna data and the Hanna/
Hanna analysis. Our preprocessing protocol resulted in a combined
data set comprising 25 samples and approximately 11,000 genes.
Samples belong to one of four conditions: naı̈ve human (NH, n 5

6), primed human (PH, n 5 5), naı̈ve mouse (NM, n 5 6), and primed
mouse (PM, n 5 8). Hierarchical clustering of this data set separates
the samples according to their pluripotency state (Figure 2A), in
agreement with ref. 9. A principal component analysis (PCA) sup-
ports the conclusion drawn from the clustering (Figure 2B).
However, the second principal component (PC) indicates that there
may be some similarity between NH and PM, on which we will follow
up upon later.

Stepwise aggregation of gene expression data. To enhance signal
and remove noise in the combined data set, we processed and
subsequently aggregated the data, in multiple ways as described in
Figure 1.

1. Mapping of gene expression data to a functional network. The first
kind of noise reduction was accomplished by the joint analysis of
genes known to be related to each other. Gene expression profiles
from the combined data set were thus mapped onto a functional
network as described in Methods. Focusing on specificity rather than
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sensitivity, our network is based on experimentally validated inter-
actions and genes that have at least one annotation in the biological
process division of GO (GOBP, see Methods). The resulting network
contains 5220 genes connected by 17171 interactions.

Next, for each link (interaction) in the network, and each possible
pair of ‘‘source’’ and ‘‘target’’ conditions, we computed the
ExprEssence LinkScore (see Methods), which describes the mag-
nitude of concerted change for the two linked genes, occurring in
the transition from source to target condition. A positive LinkScore
suggests simultaneous upregulation and it suggests that the corres-
ponding interaction is more pronounced in the target condition than

in the source condition. Conversely, an interaction with a negative
LinkScore suggests simultaneous downregulation. Notably, false
positive and false negative findings are possible, e.g. because an
interaction may be context-dependent. Pairs of concerted upregu-
lated or downregulated genes could also be identified from single-
gene analyses of gene expression data or be constructed by
machine learning as features. However, such approaches lack
the biological focus specificity given by an underlying functional
network, highlighting only pairs of co-regulated genes that are a
priori known to interact, resulting in what we call highlighted
mechanistic changes.

Figure 1 | Roadmap of the work presented in this paper. We start by integrating several input data sets, namely one large-scale network of direct

(physical) and indirect (functional) interactions derived from STRING and featuring mostly expert-curated data, and two high-throughput

transcriptomics studies that describe the transition between naı̈ve and primed pluripotency in human and mouse. On this multidimensional data set, we

sequentially apply computational methods (grey elliptical boxes), obtaining data in a more and more abstract form, from genes to mechanisms to gene

ontology terms. Each step is intended to remove noise from the data. The result of each step is shown in a blue box. We employed several analysis and

visualization methods to obtain insights into the data at each step (beige boxes).

Figure 2 | Analysis of the combined gene expression data set of Hanna et al (2009, 2010). The Hanna/Hanna data set consists of 25 microarray samples

that correspond to the four conditions naı̈ve human (NH), primed human (PH), naı̈ve mouse (NM), and primed mouse (PM). For the sample

preprocessing and construction of the gene expression matrix, see text. A: Hierarchical clustering dendrogram of the samples (Spearman’s rank

correlation, complete linkage). The colour bar below the dendrogram provides information about the species (upper bar) and the pluripotency state

(lower bar) of the single samples. The samples are labelled with their GEO identifiers; see data sets GSE21222 and GSE15603 for further details. B:

Principal component analysis (PCA) of the data set. Four distinct clusters are identifiable, which correspond to the four conditions. The species of origin

of the samples is indicated by the colour of the single symbols, while the colour of the ellipses enclosing the four clusters indicates the pluripotency state of

the samples inside.
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For each possible pair of source and target conditions (Figure 3),
we selected the links with LinkScores at or above the 99.75 percentile,
yielding twelve link sets. We then extracted from each link set the
genes that are connected by those links, yielding twelve gene sets,
hypothesizing that these genes are involved in the major mechanisms
characterizing the transition to the respective target condition.

2. Mapping of genes involved in high-scoring network links to GOBP
terms. In order to facilitate interpretation of the GOBP enrichment
analysis presented next, we classified the twelve comparisons into
several aggregates, namely target aggregates and block aggregates
(see Figure 3). The latter were further subdivided into natural and
mixed block aggregates. This allowed us to identify mechanisms that
are consistently enriched in transitions leading to the same condi-
tions (target aggregates) or the same pluripotency states such as naı̈ve
or primed (block aggregates), see Figure 3. The same aggregates will
be later used for a third and final noise reduction step.

In the second noise reduction step, the gene sets that we defined
for the comparisons in the first step were subjected to a functional
analysis based on their GOBP annotation (see Methods). We con-
structed a heatmap showing enriched and depleted GOBP terms for
each of the twelve gene sets corresponding to the twelve comparisons
(Figure 4). In contrast to the primed block aggregate, the naı̈ve one
features a larger number of depleted GOBP terms. This is also the
case for the comparison #1 between NH (source) and NM (target),
which thus captures ‘‘naı̈vity’’ in mouse. This enrichment pattern
supports a model in which there is an upregulation of a multitude
of pathways in the primed (but not naive) pluripotent stem cells.
Next, we subjected the GOBP matrix (Figure 4) to PCA, using the

GOBP terms as variable names (Figure 5). The first two PCs explain
,52% and ,14%, respectively, of the total variance. The first PC
clearly separates the natural block aggregates primed and naı̈ve, mak-
ing the distinction between naı̈ve and primed pluripotency the most
outstanding feature of our data set.

3. Aggregation of gene sets of comparisons that describe similar transi-
tions. We performed a third noise reduction and data aggregation
step and combined the GOBP enrichment data. More specifically, we
summarized the evidence for enrichment of GOBP terms for each
target condition (see Methods). The resulting matrix of aggregated
evidence was again subjected to a number of analyses. First, we
generated a heatmap of the matrix (Figure 6). Clustering of the target
aggregates (columns) results in two clusters, one of them containing
the target aggregates that describe the naı̈ve pluripotent state in
human and mouse, while the other one comprises the corresponding
aggregates for the primed state. This representation of the data there-
fore strengthens the case for a similarity between the prototypical
naı̈ve mouse and the naı̈ve human states, as proposed by ref. 9. This
clustering is restricted to the GOBP terms that were found to be
specific for any of the block aggregates, as detailed below.

Applying a PCA to the matrix of aggregated evidence highlights
the relationships between the target aggregates as well as the relative
importance (loadings) of the single GOBP terms for the target aggre-
gates (Figure 7). Here, the first PC clearly separates the target aggre-
gates PM and PH (which have positive scores) from the target
aggregates NM and NH (negative scores), with both groups having
a lower intragroup than intergroup distance. Again, we conclude that
there are functional similarities between the naı̈ve states in mouse

Figure 3 | All pairwise comparisons of conditions, and aggregates thereof. A comparison has a source and a target condition. For example, for

comparison #1, NH is the source and NM is the target condition. Aggregates of comparisons are defined as follows. (a) by target condition (NH, NM, PH,

PM), and (b) block-wise. The latter are subdivided into the natural blocks naı̈ve (N, green) and primed (P, red) and the mixed ones NHPM (blue) and

NMPH (cyan), see also Supplementary Table S1. Target aggregates are indicated by arrows below the columns; all comparisons within a column

constitute a single target aggregate. Block aggregates are indicated by enclosing coloured circles and rounded rectangles. All comparisons that are enclosed

within a shape of a given colour are part of the aggregate that is associated with that colour; a comparison may be part of multiple aggregates. For example,

N (green) aggregates comparisons with target naı̈ve (regardless of species, but excluding naı̈ve as the source), NH aggregates all comparisons with target

NH, and NHPM allows checking the hypothesis that NH and PM have properties in common. LinkScore calculations for a comparison estimate which

links between genes start up during the transition from source to target. For each comparison, the top-scoring links form its link set, which in turn gives

rise to a corresponding gene set.
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(represented by the target aggregate NM) and human (NH).
Moreover, since the first PC accounts for 74% of the variance,
these similarities are substantial. However, Figure 4 indicated that
the naı̈ve block aggregate is characterized by depletion of GOBP
terms that are enriched elsewhere; yet the aggregation procedure
that underlies the PCA considers enriched GOBP terms only. We
investigated this issue further using a statistical approach, deter-
mining how many and which GOBP terms and, hence, biological
processes are in fact common between NM and NH (see Figure 8
below). While the first PC in Figure 7 seems to capture functional
and species-independent characteristics of naı̈ve and primed plur-
ipotency, the second PC, explaining roughly 17% of total variance,
has a different interpretation. Here, the target aggregates NH and
PM have strikingly similar scores, hinting at some biological pro-
cess similarity between the claimed naı̈ve state in human and the
primed state in mouse. This finding prompted us to define the
(additional) block aggregate NHPM (see Figure 3). In the next
section we will use this aggregate to decipher the GOBP terms
that might underlie this finding and that calls for improvements of
protocols for human naı̈vity.

4. Exploration of single GOBP terms and calculation of statistical
significance. Finally, we explored which single GOBP terms are of
highest importance for each block aggregate, in terms of being spe-
cifically enriched in the link sets that characterize each block aggreg-
ate. In Figure 7, the GOBP terms located close to a given target

aggregate feature low p-values (i.e. are highly significant) for this
target aggregate. Closest GOBP terms are thus considered specific
for ’their’ target aggregate. Moreover, terms that are situated between
two target aggregates, but more distant to the other two target aggre-
gates, may be specific for a block aggregate. For example, a term
between the aggregates NM and NH is likely to support the block
aggregate naı̈ve. Calculating statistical significance of enrichment of
any such GOBP term in any given block aggregate is possible by
applying Fisher’s method. However, since the comparisons and the
link sets and gene sets derived from them share some information
(e.g. the target condition, possibly single genes etc.), single p-values
are not only lacking the correction for multiple testing, but they also
are not obtained in a strictly independent manner and the overall p-
values should be interpreted conservatively. To account for this, for a
given GOBP term we tested the Fisher scores obtained for the block
aggregates against the background distribution for this GOBP term
across all comparisons (see Methods). GOBP terms considered sig-
nificantly enriched in a block aggregate, and thus specific for it, were
annotated by color in Figure 7, indicating the respective block ag-
gregate. In Figure 8, their Fisher scores are displayed, including a
boxplot for the background distribution, demonstrating that most of
them are specific for one single block aggregate. Specifically, for most
of the selected GOBP terms, the runner-up block aggregate has a
score that lies within the box, i.e. below the 75% percentile, so the
selected GOBP terms are indeed specific for their respective block
aggregate.

Figure 4 | Heatmap of evidence for associations between comparisons and GOBP terms. Twelve gene sets were derived from the comparisons between

source and target conditions, see Figure 3 and Supplementary Table S1, by selecting, using a STRING functional network, the genes involved in

the links with the highest LinkScore. These gene sets were functionally annotated based on GO. For each gene set the -log p-values of the GO biological

process (GOBP) term enrichment or depletion are given. Rows are scaled. In the annotation bar on top of the matrix, the colouring identifies the

membership of the twelve gene sets in the naı̈ve (green) or primed (red) block aggregate.
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Figure 5 | Principal component analysis (PCA) of evidence for associations between comparisons and GOBP terms. PCA was performed on the matrix

shown in Figure 4, taking the comparisons as samples and the GOBP terms as variable names. The comparisons are numbered, with the numbers

matching those assigned in Figure 3 and Supplementary Table S1. Colours are used to reflect sample membership in the block aggregates naı̈ve and

primed, as defined in Figure 3, with grey indicating samples that are in neither aggregate.

Figure 6 | Heatmap of evidence for enrichment of GOBP terms in target aggregates. Aggregation of the twelve comparisons into target aggregates was

performed as described in the text. The heatmap includes only GOBP terms for which a significant enrichment in one of the block aggregates was

determined using our statistical assessment. This aggregate is colour-coded to the left of the heatmap (green: naı̈ve, red: primed, blue: NHPM).
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Investigation of GOBP terms specific for the natural block aggre-
gates. The GOBP terms that were found to be specific for any of
the block aggregates by our statistical approach can be classified
into two broad categories. The first one comprises biological
processes that are specific for any one of the two natural block
aggregates, namely naı̈ve and primed. Such terms are found in
panels A and B of Figure 8. Further, they are colored in the
PCA plot of Figure 7. (The second category concerns the mixed
aggregates, see discussion.)

Panel A comprises terms that are enriched in the naı̈ve block
aggregate. These terms represent processes that are overrepresented
in the naı̈ve versus the primed state. Notably, many of these GOBP
terms refer to epigenetics, such as histone acetylation, which is a
chromatin modification that generally correlates with active tran-
scription. Interestingly, early embryonic cells are characterized by a
hyperdynamic chromatin architecture, suggesting that heterochro-
matic and largely inaccessible domains are mostly formed upon
differentiation. Higher activity of histone acetylation pathways sug-
gests that the euchromatic state may be more prominent in naı̈ve
cells. This is consistent with several studies that highlight the need for
open chromatin structures for successful reprogramming. For
example, knockdown of Mbd3, part of the NuRD repressor complex
with histone deacetylase activity, enhanced reprogramming effi-
ciency to near 100%20. Further, culturing of naı̈ve mouse mESCs in
the presence of Lif and two inhibitors, Glycogen-synthase kinase b
inhibitor and Mek inhibitor, (called 2i), or Lif and serum, causes a
loss of repressive modifications21.

Further examples for terms that are commonly enriched towards
naı̈ve pluripotency are signal transduction in response to DNA
damage and related terms. Maintaining genomic integrity is of crit-
ical importance for any stem cell, especially for ESCs, since DNA
damage compromises the daughter cells22. Indeed, DNA repair
mechanisms are very active in mouse as well as in human ESCs23,24

and reduced DNA repair responses contribute to stem cell ageing25.
Notably, naı̈ve pluripotent stem cells are situated very early in the
course of development, rendering genomic integrity of utmost
importance. The aspect of genomic integrity may also explain why
terms related to metabolism, e.g. primary metabolic process, are char-
acteristic of naı̈ve pluripotency. The metabolism of primed ESCs
relies on anaerobic glycolysis rather than oxidative phosphorylation
(OXPHOS), presumably, amongst other reasons, because OXPHOS
is associated with increased formation of reactive oxygen species
(ROS), which can lead to increased genomic damage26–28. In the
naı̈ve ground state of pluripotency, glycolysis is further activated21.
Progressive oxidation of metabolites is required and essential for
differentiation; indeed, inhibition of differentiation can be achieved
by inhibiting oxidization29. Other primary metabolic processes like
lipid and carbohydrate metabolism are enhanced in the ground naı̈ve
state21.

Panel B in Figure 8, on the other hand, comprises terms that are
enriched in the natural block aggregate primed. In analogy to the
aforementioned terms, these terms represent processes that are
enriched in primed cells but are depleted and/or suppressed in human
and mouse cells upon induction of the naı̈ve state. Many of these
terms are related to developmental and differentiation processes.
These include general terms like cell morphogenesis and regulation
of cell development, as well as more specific ones like neuron differ-
entiation. Such findings are consistent with, e.g., ref 30, who showed
that differentiating ESCs are committed to a neural fate in the absence
of factors that enforce alternative differentiation pathways31–33.

Investigation of GOBP terms specific for the naive-human/
primed-mouse (NHPM) block aggregate. While panel A and B of
Figure 8 likely represent commonalities between naı̈ve and primed
pluripotency, respectively, panel C comprises terms that are shared
between naı̈ve human and primed mouse cells. Such terms are

Figure 7 | Principal component analysis (PCA) of evidence for enrichment of GOBP terms in target aggregates. Aggregation of the twelve comparisons

into target aggregates was performed as described in the text; the matrix of log-transformed p-values (Figure 6) was then analysed by PCA.

In this biplot, two scatterplots are overlaid: one for the scores of the four target aggregates, represented by their respective abbreviations (see Figure 3,

denoted NH, PH, NM, and PM, for the four pairs of a species and a state), and one for the relative importance (or loadings) of the GOBP terms, plotted as

grey or coloured dot symbols. The symbol colour indicates for which, if any, block aggregate (as defined in Figure 3, denoted N, P, NHPM, and NMPH)

the term was found to be significant (see text). The axes below and to the left of the plot belong to the scores plot, the ones on top and to the right to the

loadings plot.
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responsible for the striking similarity between NH and PM in terms
of the second PC, as shown in Figure 7, and these terms are discussed
below.

We finally analyzed the single genes whose presence in the selected
gene sets gave rise to the identification of the enriched GOBP terms.
Supplementary Table S2 provides, for each given GOBP term that
was left over after filtering (see Methods), and for each gene set, the
list of genes within the gene set that were annotated with that GOBP
term. Genes that occur in several (or even all) of the gene sets that
make up one of the block aggregates are specifically important. For
example, the gene PBX1 was found in all four gene sets contributing
to the block aggregate primed. Indeed, PBX1 has been described as a
transcriptional regulator of the neural marker gene SOX334 support-
ing that neural differentiation is a default differentiation pathway.
(SOX3 was not part of our combined data set.)

Investigation of specific KEGG pathways. In order to compare our
findings to results based on a pathway-centric compendium of
functional gene annotations, we repeated our analysis pipeline
using the KEGG pathway database, instead of GOBP. Figure 9
summarizes the results, on the same analysis stage as Figure 6,
featuring a heatmap of KEGG pathway enrichment evidence in
target aggregates. The clustering of the target aggregates confirms

the purported closeness of human and mouse naı̈vity. This clustering
considers only significant KEGG pathways, i.e. pathways that were
found to be specifically enriched in any of the four block aggregates,
with a p-value threshold of 0.05. Yet, a number of KEGG terms
resonate well with our previous findings. Base excision repair was
identified as specific for the naı̈ve block aggregate, corroborating the
GOBP term signal transduction in response to DNA damage found
above. Furthermore, glycolysis and valine, leucine, and isoleucine
biosynthesis were among the naı̈ve-specific terms. The former is
consistent with ref. 21. With respect to the latter, it was shown that
the metabolomes of hESCs and human embryonal carcinoma cells
(hECCs), which are the malignant counterpart to the hESCs, share
common signatures comprising amongst others also amino acid
metabolism28. Further, mESCs cultured in 2i 1 Lif in comparison
to Serum 1 Lif upregulate amino acid related metabolism21.
However, the precise role of different amino acid pathways in
pluripotency remains to be determined in detail. As for pathways
that are shared between the target aggregates PH and PM, we found
axon guidance, supporting our conclusion about the importance of
neuron differentiation for the primed aggregate. Finally, the NHPM
block aggregate features various signalling pathways involved in
differentiation such as those related to TGF-beta, NOD-like and
Jak/STAT, consistent with the GOBP analysis. In interpreting the

Figure 8 | Distribution of the Fisher statistic of GOBP terms. Selection of GOBP terms was based on specificity; only terms that were found to be specific

for one of the block aggregates are included. Fisher statistics of association p-values were computed to evaluate the enrichment of GOBP terms in block

aggregates. Background distributions of Fisher statistics (i.e. its distribution for all possible 4-tupels of comparisons, see text for details) are shown

in a series of boxplots. Overlaid on each boxplot are the Fisher statistics that were computed for the four block aggregates. The terms are grouped based on

the block aggregate for which they were found to be specifically significant. Panels A and B contain terms that are significant for the naı̈ve and primed

block aggregate, respectively. Terms in panel C, in turn, support the mixed block aggregate NHPM. In each panel the terms are ordered by the median of

the background distribution.
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results of the KEGG analysis, however, it should be noted that fewer
genes could be annotated with KEGG pathways, compared to those
with GOBP annotations.

Application of the pipeline on another data set on naı̈ve human
pluripotency. Most recently, Hanna and co-workers published a
follow-up paper10 on the topic of naı̈ve human cells. Compared to
their 2010 results, they used a refined protocol to establish human
cells that more closely resemble the naı̈ve mouse state of
pluripotency.

We therefore compiled a combined data set from the human gene
expression data that accompanied Gafni et al. [2013]10 and the mouse
gene expression data from Hanna et al. [2009]8; we will refer to this
and the analysis based thereon as the Hanna/Gafni data and the
Hanna/Gafni analysis. In order to ensure comparability of the ana-
lyses, we restricted the Hanna/Gafni data set to the genes that were
also part of the Hanna/Hanna data set. First, we performed hierarch-
ical clustering and PCA, both visualized in panels A and B of
Figure 10; Figure 2 features the equivalent analyses for the Hanna/
Hanna data. Hierarchical clustering identified two major clusters in
the combined data set, which correspond to the two states of plur-
ipotency, i.e. naı̈ve and primed, again supporting the similarity of
NH and NM cells. The PCA, however, is less clear in this regard.
While the first PC clearly distinguishes the PM samples from the NM
samples, the human samples form a cloud around the origin of the
coordinate system. This observation suggests that important gene
expression changes that distinguish naı̈ve from primed pluripotent
samples in mouse are not recapitulated in human. To gain further
insights into this matter, we ran our aggregation-based analysis pipe-
line on the combined data set. As is evident from the column-clus-
tering in the heatmap of GOBP enrichment shown in Figure 11
(representing the same analysis stage as Figure 4; the subsequent

PCA analysis is shown in Supplementary Figure S3), three of the
four single comparisons making up the block aggregate naı̈ve, cluster
closely together. Indeed, their functional signatures appear to be
more consistent as compared to Figure 4. Interestingly, within the
list of GOBP terms that are consistently enriched in these three
comparisons we find terms like stem cell maintenance, telomere
maintenance, histone modification and cell cycle process, all of them
known to be important for stem cell identity. Regarding the latter,
pluripotent stem cells are characterized by an accelerated cell cycle,
which is slowed down upon differentiation35. The mechanisms
invoked in naı̈ve human are thus similar to the naı̈ve mouse state,
and they are related to stemness. However, the fourth member of the
naı̈ve block aggregate, which corresponds to the within-species com-
parison of PH as source and NH as target (comparison 8), has a
strikingly different biological process signature, as evident by the
clustering. Since this comparison is part of the target aggregate
NH, this might explain the considerable spatial distance between
NH and the target aggregate NM in the PCA plot shown in Figure
12 (representing the same analysis stage as Figure 7; the underlying
heatmap, taking only the significant (i.e. colored) terms of Figure 12,
is shown in Supplementary Figure S4), which further points to con-
siderable differences between NH and NM in the Hanna/Gafni ana-
lysis. On the other hand, NH and PM are located quite close to each
other in the PCA plot, suggesting similarity between these, just as was
the case in the Hanna/Hanna analysis (Figure 8). In line with this, our
statistical assessment method again identified numerous GOBP
terms that are significant for the block aggregate NHPM
(Figure 13, panel C; note that panel C is truncated for the sake of
readability, Supplementary Figure S2 provides an untruncated ver-
sion). These terms are discussed below. Then again, there are also a
number of GOBP terms that are specific for the block aggregates
naı̈ve and primed (panels A and B, respectively, of Figure 13).

Figure 9 | Heatmap of evidence for enrichment of KEGG pathways in target aggregates. The heatmap includes only KEGG pathways for which a

significant enrichment in one of the block aggregates was determined using our statistical assessment. This aggregate is colour-coded to the left of the

heatmap (green: naı̈ve, red: primed, blue: NHPM, cyan: NMPH).
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Among the terms for the naı̈ve block aggregate are two terms directly
related to cell cycle control, the importance of which for the plur-
ipotent state35 was already pointed out; the respective terms are G1/S
transition of mitotic cell cycle, regulation of cell cycle and associated

metabolic processes. Conversely, terms related to differentiation
were found for the block aggregate primed. Prominent among them
were terms related to formation of ectoderm structures, such as
axonogenesis and eye morphogenesis. Ectodermal differentiation-

Figure 10 | Analysis of the combined gene expression data set of Hanna et al. [2009]8 and Gafni et al. [2013]10. The Hanna/Gafni data set consists of 26

microarray samples that correspond to four conditions: NH, PH, NM and PM. For the sample preprocessing and construction of the gene expression

matrix, see text. A: Hierarchical clustering dendrogram of the samples (Spearman’s rank correlation, complete linkage). The colour bar below the

dendrogram provides information about the species (upper bar) and pluripotency state (lower bar) of the single samples. The samples are labelled with

their GEO identifiers; see data sets GSE46872 and GSE15603 for details. B: Principal component analysis (PCA) of the data set. The colour of the symbols

indicates the pluripotency state of the respective samples, while labels next to the symbols indicate the species.

Figure 11 | Heatmap of evidence for association of comparisons and GOBP terms, for the Hanna/Gafni data set. See Figure 4 for further details.
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related processes were also identified as specific for the primed ag-
gregate in the Hanna/Hanna analysis. This indicates that depletion of
terms related to ectoderm differentiation is triggered by various pro-
tocols for induction of naı̈ve pluripotency in a cross-species manner.
Furthermore, within this GOBP term group are also terms that relate
to mesoderm formation, like skeletal system development and kidney
development, which were not observed in our Hanna/Hanna analysis
(Figure 8). We take this as indication for a broader activity of differ-
entiation processes in the primed state and, consequently, repression
of these processes in the naı̈ve state as a result of the protocol of Gafni
et al. [2013]10. This is supported further by general differentiation
related terms such as extracellular matrix organization and biological
adhesion that are also found among the terms characterizing the
block aggregate primed in the Hanna/Gafni data.

Discussion
When analyzing transcriptomics data, as done here, one must always
be aware that the amount of mRNA in a cell is not necessarily pre-
dictive of the amount of the corresponding protein, due to posttran-
scriptional regulative mechanisms36,37. Hence, the success of cell
programming efforts has to be further confirmed experimentally
by cell morphology, growth factor requirements, functional assays
like contribution to chimeras and, as a new tool, cell surface proteo-
mics38. Moreover, the functional network and the gene ontology
annotations we used contain false positive and false negative asser-
tions, that is, they entail both incorrect and missing information.
Finally, our aggregation of data for similar transitions treats species
differences and developmental state differences on equal footing,
calling for a scheme that may assign different weight to species dif-
ferences and state differences.

Notably, species similarities and developmental state similarities
are considered together in a single pipeline, designed to highlight
similarities in terms of GO terms and pathways to the degree that
these are robustly identifiable, i.e. after several steps of noise filtering.
If the molecular mechanisms would not be ‘similar enough’ across
species or states, our pipeline could not identify significant findings,
many of which having high biological plausibility. Furthermore, we

note that we investigate a transition from one state of pluripotency to
another, and several groups (ours included) have found that the
genes and pathways involved in these are conserved at least to some
degree, see e.g. ref. 39 and references cited therein. Along the same
lines, we mixed the comparisons between conditions together into
aggregates, with the purpose to detect similarity between these if
there is one. Thus, from the very outset, we were open to find any
robust similarity that is there. Block and target aggregates together
enable to find similarity in the two naive conditions, in the two
primed conditions, and also between in the naive human and the
primed mouse condition. These three cases are indeed present; our
approach was designed to find each of these similarities if they exist.
These similarities are not mutually exclusive: If mechanisms are
shared between conditions A & B, other mechanisms may be shared
between conditions A & C, etc., even though the conditions them-
selves are distinct.

Our perhaps most surprising finding is the similarity between the
conditions naive human and primed mouse, captured by the Gene
Ontology (GOBP) terms for the block aggregate NHPM consisting of
these conditions. We interpret these terms as representative of pro-
cesses that were either wrongly induced by the treatment of the
human cells or, alternatively, that failed to be repressed by it. In both
cases, they drive the human cells away from the prototypical state of
mouse naı̈vity rather than bringing them closer. Inspecting Figure 8,
we note that among the terms with that role are (cellular) response to
(endogenous) stimulus, cell proliferation, tube morphogenesis, extra-
cellular matrix organization, blood vessel morphogenesis and osteo-
blast differentiation. Human and mouse ESCs and iPSCs are cultured
in media of different composition, explaining the enrichment in
cellular response to stimulus, and to organic substance in particular.
The other biological processes are all related to differentiation path-
ways. Unlike neurons, which are of ectodermal origin, blood vessels
and bone derive from mesoderm, however. Regarding pluripotency,
one theory put forward recently proposes that in pluripotent stem
cells a multitude of differentiation pathways leading to the formation
of different germ layers are active simultaneously, the effectors of
which compete with each other. Only if one pathway dominates,

Figure 12 | Principal component analysis (PCA) of evidence for enrichment of GOBP terms in target aggregates, for the Hanna/Gafni data set. See

Figure 7 for further details.
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differentiation will occur accordingly. One example is SMAD2/3
(triggered by TGF 1) and SMAD1/5/8 (triggered by BMP4) compet-
ing for SMAD440,41. Thus, some of these multiple differentiation
pathways may indeed be activated in the transition of naı̈ve to
primed pluripotency in the mouse, and similarly in the unstable
transition of primed to naı̈ve pluripotency in human. In the
Hanna/Gafni analysis the NHPM block aggregate is again dominated

by cellular response pathways such as response to organic stimulus,
and response to stress, as well as differentiation pathways, such as
tissue development, ossification and tissue remodelling. Ossification
points to mesodermal processes as in the Hanna/Hanna analysis.

In summary, we designed a workflow that allows the (re-)analysis
of noisy gene expression data, employing several layers of abstrac-
tion. We re-analyzed data sets from naı̈ve mouse and primed as well

Figure 13 | Distribution of the Fisher statistic of GOBP terms, for the Hanna/Gafni data set. See Figure 8 for further details. Panel C features GOBP

terms that are specific for the block aggregate NHPM or NMPH, and it is truncated with respect to the number of terms; Supplementary

Figure S2 is the untruncated version.

Figure 14 | Relationship between the cell conditions in Gene Ontology space. Our method yields a visualization of the similarity of conditions together

with the identification of the Gene Ontology biological processes that are underlying this similarity.
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as naı̈ve and primed human pluripotent stem cells and characterized
the various cell types by enrichment analyses. We found that cells
claimed to be naı̈ve human display an overlapping gene expression
signature with the naı̈ve mouse cells, explaining their naı̈ve prop-
erties. However, we also found similarities to the primed mouse state.
This raises the question of what caused the incomplete induction of
the naı̈ve state in hESCs. Closely related are the biological processes
causing hESCs to transit from the naı̈ve into the primed state during
their isolation, as they were naı̈ve in the inner cell mass in the first
place. As summarized in Figure 14, our study suggests that there are
residual biological processes typically found in primed mouse plur-
ipotency that hinder complete induction of true human naı̈vity.
These processes include response to endogenous stimulus and differ-
entiation-related biological processes, which may also be at work in
the defaulting of hESCs into the primed state. Inhibiting these may
enable us to come even closer to the naı̈ve human pluripotent state.

Methods
Sample selection and preprocessing: human. Human microarray data for primed
and naı̈ve stem cells of both embryonic and iPS origin were obtained from Gene
Expression Omnibus (GEO)42, accession number GSE212229, performed on the
experimental platform Hgu133plus2 from Affymetrix. After a preliminary analysis of
the whole GSE set (see Supplementary Figure S1), the subset with GSM numbers
530613 to 530618 was taken to represent the naı̈ve state, while GSM numbers 530608
to 530612 formed the group of primed samples. On the reduced set of samples we
applied the mas5calls() function (part of the affy package of BioConductor) to obtain a
list of probesets that were flagged as absent in one or more samples. The data set was
then processed using the MAS5 algorithm, which encompasses background
correction, normalization and summarization of the single probes of each probeset.
This was followed by log2-transformation and filtering-out of all probes that did not
have at least 5 present flags across all samples. Using the annotation library
hgu133plus2.db, the probesets were mapped to their respective EntrezGene identifiers
and probesets annotated to the same EntrezGene identifier were aggregated by their
median value.

In order to reanalyze the data from Gafni et al.10 we obtained from GEO the gene
expression data set GSE46872, which was run on the Affymetrix-platform
HuGene1.0ST. Out of the twelve samples contained therein, all were used in this study
and assigned to the naı̈ve and primed group according to the sample metadata. Data
set processing was performed with the RMA algorithm43. Using the annotation library
hugene10sttranscriptcluster.db, the probesets were mapped to their respective
EntrezGene identifier, and probesets annotated to the same EntrezGene identifier
were aggregated by their mean value. Processing the human dataset GSE21222 using
RMA resulted in minimal to non-existent differences, see Supplementary Figure S5.

Sample selection and preprocessing: mouse. Mouse microarray data for primed and
naı̈ve stem cells of both embryonic and iPS origin were obtained from GEO, accession
number GSE156038. The samples within the data set were run on the Agilent Whole
Mouse Genome Microarray 4x44K platform. No method for assessing the rate of
present/absent calls per individual probeset, comparable to the mas5calls() method,
was available in this case; thus we downloaded the data in already preprocessed and
normalized form via an interface provided by the R package GEOquery44.
Preprocessing and normalization of the data was performed by the original authors
using the Limma package. From this data set we removed two samples, namely
GSM390184 and GSM390186, because they were cultured under challenging
conditions, which carried the possibility of confounding our analysis. Agilent spot
identifiers were mapped to mouse EntrezGene identifiers; in a second step the mouse
EntrezGene identifiers were mapped to human EntrezGene identifiers using
homology information from HomoloGene45. See Supplementary Text S1 for a
discussion of some problems in identifier mapping. Probesets annotated to the same
human EntrezGene identifier were aggregated by their median value. We used this
mouse data set to compare against the human data from Hanna et al.9 as well as Gafni
et al.10, giving rise to what we call the Hanna/Hanna and Hanna/Gafni data and
analyses, respectively. Aggregating multiple probesets by mean or median resulted in
results that were practically not distinguishable, see Supplementary Figure S6.

Data intersection. The processing of the human and mouse expression data sets both
yielded an expression matrix with the samples in the columns and the genes,
represented by human EntrezGene identifiers, in the rows. To enable comparisons
across the matrices, in each matrix we centered each gene on its mean across the
matrix, thus removing information on, and possible bias in, the magnitudes of gene
expression. Hanna et al.9 performed a similar processing step. Subsequently, the
intersection of the genes within the human and the mouse data set was formed and a
joint expression matrix containing the centered gene expression values, restricted to
the intersection, was constructed. Finally, for each gene its mean and variance across
the four conditions, i.e. NH, PH, NM and PM (see Figure 3), were computed.

STRING network. A comprehensive network for human was obtained from STRING
9.018. We restricted the network to links (interactions) that featured confidence scores

for experimental validation equal to or greater than 600. We mapped the computed
expression means and variances for each gene onto the network as node attributes. On
subsets of genes derived from this data set, we applied functional analyses based on
GO12, employing the biological process (GOBP) subdivision and KEGG13. Genes not
annotated within this subdivision did not contribute to, nor confound, our analyses;
we filtered the network retaining only genes with GOBP annotations. For the Hanna/
Hanna analysis based on human data by Hanna et al.9 we thus obtained a network
containing 5220 genes and 17171 interactions. The network that we obtained in the
course of analyzing the Hanna/Gafni data was restricted to the genes that were also
used in the Hanna/Hanna analysis; this move was intended to facilitate comparability
with the latter. This resulted in a network containing 5185 genes and 17020
interactions. Network analysis was performed using ExprEssence19, which runs as a
plugin in the popular network analysis tool Cytoscape v2.846, as described next.

Pairwise comparison of conditions and highlighting of mechanistic changes. The
four conditions (NH, PH, NM and PM) gave rise to twelve comparisons of conditions
as described in Figure 3. Any comparison is directed from source to target condition.
Let A and B be two genes, with expression measurements, that are connected by a link
in the network. Let mA;source, s2

A;source, nA;source and mA;target, s2
A;target, nA;target be A’s

mean, variance and sample size under the source and target condition, respectively.
Let the values for B be defined likewise. The LinkScore L is then computed as the sum
of two T statistics, one for each gene, as follows19.

L~
mA,Target{mA,Sourceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
A,Target

nA,Target
z

s2
A,Source

nA,Source

r z
mB,Target{mB,Sourceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
B,Target

nB,Target
z

s2
B,Source

nB,Source

r : ð1Þ

A gene that is highly expressed in the target condition, but less so in the source
condition will thus contribute a high positive value to the LinkScore of any given
interaction that this gene is part of. An interaction with a positive overall LinkScore
then experiences a ‘‘start-up’’ towards the target condition, according to terminology
established19. For each comparison (Figure 3) we employed LinkScore calculations to
identify the interactions with the highest LinkScores, i.e. the most pronounced start-
ups, and we defined one link set and one gene set as follows. We set a cutoff value at
the 99.75 percentile of the corresponding LinkScore distribution and selected all links
(referred to as link sets) with LinkScores that were equal to or greater than the cutoff,
yielding a link set. The genes that are connected by the interactions within this link set
were then extracted, yielding the corresponding gene set.

Functional annotation based on GOBP and KEGG. Gene sets (corresponding to the
comparisons) were subjected to functional analysis, employing the R package
GOstats47 to test whether terms from the biological process division of GO (GOBP,12)
were over- or underrepresented, respectively. Every GOBP term was tested separately
on each gene set. If a gene annotated by a GOBP term is found in a gene list, it is called
a hit. GOstats uses the hypergeometric distribution to assess for a given GOBP term
the significance of the deviation, between the number of actual hits and the expected
number of hits, given the frequency of the term’s annotation to the background gene
set (i.e. the gene universe); this significance is then reported as a p-value. The gene
universe was defined as the set of genes that have measurements in both species, are
present in the network and are annotated with at least one GOBP term. The single p-
values were log-transformed and assembled into a matrix of dimension n 3 m, with n
being the number of GOBP terms and m being the number of gene sets (that is,
twelve). Because of the way they were computed, these p-values are one-tailed, one p-
value corresponding to the statement ‘‘term is overrepresented’’ and the other to the
statement ‘‘term is underrepresented’’. For each pair of GOBP term and gene set, both
p-values were calculated and the appropriate one, depending on whether the number
of hits was greater or less than the number expected by chance, was entered into the
matrix. To reflect this, the p-values were direction-signed, where a ‘‘-’’ denotes
underrepresentation. Multiple filtering steps were then applied to the resulting
matrix. First, only GOBP terms with a significant p-value in at least two of the twelve
gene sets were considered further. In addition, only GOBP terms with a minimum of
five hits in at least one of the twelve gene sets were retained.

In a similar fashion we studied associations between gene sets and KEGG path-
ways, for which GOstats also provides an interface. The protocol resembled the one
outlined above, with the exception that we did not apply the filter on the minimum
number of hits; doing so would have been too restrictive with respect to the numbers
of retained KEGG pathways.

Aggregation of comparisons. The twelve comparisons were aggregated based on
their target condition (i.e. the name of the corresponding column in Figure 3, see also
Supplementary Table S1), into one of four eponymous target aggregates, with each
target aggregate consisting of 3 comparisons. Moreover, the comparisons that share a
given pluripotency state (i.e. either naı̈ve or primed) in their target condition,
irrespective of species, but with the additional requirement that this state is not part of
their source condition, were merged into natural block aggregates. Finally, two mixed
block aggregates were created, each merging a given pluripotency state from one
species with the opposite one from the other, as described in Figure 3. Following their
definition, each block aggregate consists of 4 comparisons. For each pair of aggregate
and GOBP term, we thus considered a k-tuple of log-transformed association p-
values, with k 5 3 for target aggregates and k 5 4 for block aggregates. To obtain a
measure of how well the k single p-values collectively support the hypothesis of
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enrichment, the k-tuples for a given GOBP term were aggregated into a single p-value
using the Fisher method. Let p be a vector of p-values of length k. Then, the
aggregation statistic F is computed as

F~{2 �
Xk

i~1

log pi ð2Þ

and the corresponding p-value for each pair of a given GOBP term and condition
were computed based on the chi-square distribution with k*2 degrees of freedom,
log-transformed (base 10) and then assembled into an n 3 m matrix, where n is the
number of GOBP terms and m is the number of aggregates; for both target and block
aggregates, m 5 4. The significance of each GOBP term with respect to the block
aggregates as defined in Figure 3 was assessed in a non-parametrical way. For each
GOBP term, the distribution of the Fisher statistic was computed for all possible 495
4-tuples of the twelve comparisons. A GOBP term was called enriched for a given
block aggregate if less than 1% of all possible statistics equaled or exceeded the value of
the statistic for this aggregate.
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